# Check if a given Binary Tree is Heap

Given a binary tree, we need to check it has heap property or not, Binary tree need to fulfill the following two conditions for being a heap –

1. It should be a complete tree (i.e. all levels except last should be full).
2. Every node’s value should be greater than or equal to its child node (considering max-heap).

For example this tree contains heap property – While this doesn’t – ## Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

We check each of the above condition separately, for checking completeness isComplete and for checking heap isHeapUtil function are written.
Detail about isComplete function can be found here.

isHeapUtil function is written considering the following things –

1. Every Node can have 2 children, 0 child (last level nodes) or 1 child (there can be at most one such node).
2. If Node has No child then it’s a leaf node and returns true (Base case)
3. If Node has one child (it must be left child because it is a complete tree) then we need to compare this node with its single child only.
4. If the Node has both child then check heap property at Node at recur for both subtrees.
Complete code.

Implementation

## C++

 `/* C++ program to checks if a binary tree is max heap or not */` `#include ` ` `  `using` `namespace` `std; ` `  `  `/*  Tree node structure */` `struct` `Node ` `{ ` `    ``int` `key; ` `    ``struct` `Node *left; ` `    ``struct` `Node *right; ` `}; ` `  `  `/* Helper function that allocates a new node */` `struct` `Node *newNode(``int` `k) ` `{ ` `    ``struct` `Node *node = ``new` `Node; ` `    ``node->key = k; ` `    ``node->right = node->left = NULL; ` `    ``return` `node; ` `} ` `  `  `/* This function counts the number of nodes in a binary tree */` `unsigned ``int` `countNodes(``struct` `Node* root) ` `{ ` `    ``if` `(root == NULL) ` `        ``return` `(0); ` `    ``return` `(1 + countNodes(root->left) + countNodes(root->right)); ` `} ` `  `  `/* This function checks if the binary tree is complete or not */` `bool` `isCompleteUtil (``struct` `Node* root, unsigned ``int` `index, ` `                     ``unsigned ``int` `number_nodes) ` `{ ` `    ``// An empty tree is complete ` `    ``if` `(root == NULL) ` `        ``return` `(``true``); ` `  `  `    ``// If index assigned to current node is more than ` `    ``// number of nodes in tree, then tree is not complete ` `    ``if` `(index >= number_nodes) ` `        ``return` `(``false``); ` `  `  `    ``// Recur for left and right subtrees ` `    ``return` `(isCompleteUtil(root->left, 2*index + 1, number_nodes) && ` `            ``isCompleteUtil(root->right, 2*index + 2, number_nodes)); ` `} ` `  `  `// This Function checks the heap property in the tree. ` `bool` `isHeapUtil(``struct` `Node* root) ` `{ ` `    ``//  Base case : single node satisfies property ` `    ``if` `(root->left == NULL && root->right == NULL) ` `        ``return` `(``true``); ` `  `  `    ``//  node will be in second last level ` `    ``if` `(root->right == NULL) ` `    ``{ ` `        ``//  check heap property at Node ` `        ``//  No recursive call , because no need to check last level ` `        ``return` `(root->key >= root->left->key); ` `    ``} ` `    ``else` `    ``{ ` `        ``//  Check heap property at Node and ` `        ``//  Recursive check heap property at left and right subtree ` `        ``if` `(root->key >= root->left->key && ` `            ``root->key >= root->right->key) ` `            ``return` `((isHeapUtil(root->left)) && ` `                    ``(isHeapUtil(root->right))); ` `        ``else` `            ``return` `(``false``); ` `    ``} ` `} ` `  `  `//  Function to check binary tree is a Heap or Not. ` `bool` `isHeap(``struct` `Node* root) ` `{ ` `    ``// These two are used in isCompleteUtil() ` `    ``unsigned ``int` `node_count = countNodes(root); ` `    ``unsigned ``int` `index = 0; ` `  `  `    ``if` `(isCompleteUtil(root, index, node_count) && isHeapUtil(root)) ` `        ``return` `true``; ` `    ``return` `false``; ` `} ` `  `  `// Driver program ` `int` `main() ` `{ ` `    ``struct` `Node* root = NULL; ` `    ``root = newNode(10); ` `    ``root->left = newNode(9); ` `    ``root->right = newNode(8); ` `    ``root->left->left = newNode(7); ` `    ``root->left->right = newNode(6); ` `    ``root->right->left = newNode(5); ` `    ``root->right->right = newNode(4); ` `    ``root->left->left->left = newNode(3); ` `    ``root->left->left->right = newNode(2); ` `    ``root->left->right->left = newNode(1); ` `  `  `    ``if` `(isHeap(root)) ` `        ``cout << ``"Given binary tree is a Heap\n"``; ` `    ``else` `        ``cout << ``"Given binary tree is not a Heap\n"``; ` `  `  `    ``return` `0; ` `} ` ` `  `// This code is contributed by shubhamsingh10 `

## C

 `/* C program to checks if a binary tree is max heap or not */` `#include ` `#include ` `#include ` ` `  `/*  Tree node structure */` `struct` `Node ` `{ ` `    ``int` `key; ` `    ``struct` `Node *left; ` `    ``struct` `Node *right; ` `}; ` ` `  `/* Helper function that allocates a new node */` `struct` `Node *newNode(``int` `k) ` `{ ` `    ``struct` `Node *node = (``struct` `Node*)``malloc``(``sizeof``(``struct` `Node)); ` `    ``node->key = k; ` `    ``node->right = node->left = NULL; ` `    ``return` `node; ` `} ` ` `  `/* This function counts the number of nodes in a binary tree */` `unsigned ``int` `countNodes(``struct` `Node* root) ` `{ ` `    ``if` `(root == NULL) ` `        ``return` `(0); ` `    ``return` `(1 + countNodes(root->left) + countNodes(root->right)); ` `} ` ` `  `/* This function checks if the binary tree is complete or not */` `bool` `isCompleteUtil (``struct` `Node* root, unsigned ``int` `index, ` `                     ``unsigned ``int` `number_nodes) ` `{ ` `    ``// An empty tree is complete ` `    ``if` `(root == NULL) ` `        ``return` `(``true``); ` ` `  `    ``// If index assigned to current node is more than ` `    ``// number of nodes in tree, then tree is not complete ` `    ``if` `(index >= number_nodes) ` `        ``return` `(``false``); ` ` `  `    ``// Recur for left and right subtrees ` `    ``return` `(isCompleteUtil(root->left, 2*index + 1, number_nodes) && ` `            ``isCompleteUtil(root->right, 2*index + 2, number_nodes)); ` `} ` ` `  `// This Function checks the heap property in the tree. ` `bool` `isHeapUtil(``struct` `Node* root) ` `{ ` `    ``//  Base case : single node satisfies property ` `    ``if` `(root->left == NULL && root->right == NULL) ` `        ``return` `(``true``); ` ` `  `    ``//  node will be in second last level ` `    ``if` `(root->right == NULL) ` `    ``{ ` `        ``//  check heap property at Node ` `        ``//  No recursive call , because no need to check last level ` `        ``return` `(root->key >= root->left->key); ` `    ``} ` `    ``else` `    ``{ ` `        ``//  Check heap property at Node and ` `        ``//  Recursive check heap property at left and right subtree ` `        ``if` `(root->key >= root->left->key && ` `            ``root->key >= root->right->key) ` `            ``return` `((isHeapUtil(root->left)) && ` `                    ``(isHeapUtil(root->right))); ` `        ``else` `            ``return` `(``false``); ` `    ``} ` `} ` ` `  `//  Function to check binary tree is a Heap or Not. ` `bool` `isHeap(``struct` `Node* root) ` `{ ` `    ``// These two are used in isCompleteUtil() ` `    ``unsigned ``int` `node_count = countNodes(root); ` `    ``unsigned ``int` `index = 0; ` ` `  `    ``if` `(isCompleteUtil(root, index, node_count) && isHeapUtil(root)) ` `        ``return` `true``; ` `    ``return` `false``; ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``struct` `Node* root = NULL; ` `    ``root = newNode(10); ` `    ``root->left = newNode(9); ` `    ``root->right = newNode(8); ` `    ``root->left->left = newNode(7); ` `    ``root->left->right = newNode(6); ` `    ``root->right->left = newNode(5); ` `    ``root->right->right = newNode(4); ` `    ``root->left->left->left = newNode(3); ` `    ``root->left->left->right = newNode(2); ` `    ``root->left->right->left = newNode(1); ` ` `  `    ``if` `(isHeap(root)) ` `        ``printf``(``"Given binary tree is a Heap\n"``); ` `    ``else` `        ``printf``(``"Given binary tree is not a Heap\n"``); ` ` `  `    ``return` `0; ` `} `

## Java

 `/* Java program to checks if a binary tree is max heap or not */` ` `  `// A Binary Tree node ` `class` `Node ` `{ ` `    ``int` `key; ` `    ``Node left, right; ` ` `  `    ``Node(``int` `k) ` `    ``{ ` `        ``key = k; ` `        ``left = right = ``null``; ` `    ``} ` `} ` ` `  `class` `Is_BinaryTree_MaxHeap ` `{ ` `    ``/* This function counts the number of nodes in a binary tree */` `    ``int` `countNodes(Node root) ` `    ``{ ` `        ``if``(root==``null``) ` `            ``return` `0``; ` `        ``return``(``1` `+ countNodes(root.left) + countNodes(root.right)); ` `    ``} ` `     `  `    ``/* This function checks if the binary tree is complete or not */` `    ``boolean` `isCompleteUtil(Node root, ``int` `index, ``int` `number_nodes) ` `    ``{ ` `        ``// An empty tree is complete ` `        ``if``(root == ``null``) ` `            ``return` `true``; ` `         `  `        ``// If index assigned to current node is more than ` `        ``// number of nodes in tree, then tree is not complete ` `        ``if``(index >= number_nodes) ` `            ``return` `false``; ` `         `  `        ``// Recur for left and right subtrees ` `        ``return` `isCompleteUtil(root.left, ``2``*index+``1``, number_nodes) &&  ` `               ``isCompleteUtil(root.right, ``2``*index+``2``, number_nodes); ` `         `  `    ``} ` `     `  `    ``// This Function checks the heap property in the tree. ` `    ``boolean` `isHeapUtil(Node root) ` `    ``{ ` `        ``//  Base case : single node satisfies property ` `        ``if``(root.left == ``null` `&& root.right==``null``) ` `            ``return` `true``; ` `         `  `        ``//  node will be in second last level ` `        ``if``(root.right == ``null``) ` `        ``{ ` `            ``//  check heap property at Node ` `            ``//  No recursive call , because no need to check last level ` `            ``return` `root.key >= root.left.key; ` `        ``} ` `        ``else` `        ``{ ` `            ``//  Check heap property at Node and ` `            ``//  Recursive check heap property at left and right subtree ` `            ``if``(root.key >= root.left.key && root.key >= root.right.key) ` `                ``return` `isHeapUtil(root.left) && isHeapUtil(root.right); ` `            ``else` `                ``return` `false``; ` `        ``} ` `    ``} ` `     `  `    ``//  Function to check binary tree is a Heap or Not. ` `    ``boolean` `isHeap(Node root) ` `    ``{ ` `        ``if``(root == ``null``) ` `            ``return` `true``; ` `         `  `        ``// These two are used in isCompleteUtil() ` `        ``int` `node_count = countNodes(root); ` `         `  `        ``if``(isCompleteUtil(root, ``0` `, node_count)==``true` `&& isHeapUtil(root)==``true``) ` `            ``return` `true``; ` `        ``return` `false``; ` `    ``} ` `     `  `    ``// driver function to test the above functions ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``Is_BinaryTree_MaxHeap bt = ``new` `Is_BinaryTree_MaxHeap(); ` `         `  `        ``Node root = ``new` `Node(``10``); ` `        ``root.left = ``new` `Node(``9``); ` `        ``root.right = ``new` `Node(``8``); ` `        ``root.left.left = ``new` `Node(``7``); ` `        ``root.left.right = ``new` `Node(``6``); ` `        ``root.right.left = ``new` `Node(``5``); ` `        ``root.right.right = ``new` `Node(``4``); ` `        ``root.left.left.left = ``new` `Node(``3``); ` `        ``root.left.left.right = ``new` `Node(``2``); ` `        ``root.left.right.left = ``new` `Node(``1``); ` ` `  `        ``if``(bt.isHeap(root) == ``true``) ` `            ``System.out.println(``"Given binary tree is a Heap"``); ` `        ``else`  `            ``System.out.println(``"Given binary tree is not a Heap"``); ` `    ``} ` `} ` ` `  `// This code has been contributed by Amit Khandelwal  `

## Python

 `# To check if a binary tree ` `# is a MAX Heap or not ` `class` `GFG: ` `    ``def` `__init__(``self``, value): ` `        ``self``.key ``=` `value ` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None` `     `  `    ``def` `count_nodes(``self``, root): ` `        ``if` `root ``is` `None``: ` `            ``return` `0` `        ``else``: ` `            ``return` `(``1` `+` `self``.count_nodes(root.left) ``+`  `                        ``self``.count_nodes(root.right)) ` `     `  `    ``def` `heap_propert_util(``self``, root): ` `     `  `        ``if` `(root.left ``is` `None` `and`  `            ``root.right ``is` `None``): ` `            ``return` `True` `     `  `        ``if` `root.right ``is` `None``: ` `            ``return` `root.key >``=` `root.left.key ` `        ``else``: ` `            ``if` `(root.key >``=` `root.left.key ``and`  `                ``root.key >``=` `root.right.key): ` `                ``return` `(``self``.heap_propert_util(root.left) ``and`  `                        ``self``.heap_propert_util(root.right)) ` `            ``else``: ` `                ``return` `False` `     `  `    ``def` `complete_tree_util(``self``, root,  ` `                           ``index, node_count): ` `        ``if` `root ``is` `None``: ` `            ``return` `True` `        ``if` `index >``=` `node_count: ` `            ``return` `False` `        ``return` `(``self``.complete_tree_util(root.left, ``2` `*`  `                                       ``index ``+` `1``, node_count) ``and`  `               ``self``.complete_tree_util(root.right, ``2` `*`  `                                       ``index ``+` `2``, node_count)) ` `     `  `    ``def` `check_if_heap(``self``): ` `        ``node_count ``=` `self``.count_nodes(``self``) ` `        ``if` `(``self``.complete_tree_util(``self``, ``0``, node_count) ``and`  `            ``self``.heap_propert_util(``self``)): ` `            ``return` `True` `        ``else``: ` `            ``return` `False` ` `  `# Driver Code ` `root ``=` `GFG(``5``) ` `root.left ``=` `GFG(``2``) ` `root.right ``=` `GFG(``3``) ` `root.left.left ``=` `GFG(``1``) ` ` `  `if` `root.check_if_heap(): ` `    ``print``(``"Given binary tree is a heap"``) ` `else``: ` `    ``print``(``"Given binary tree is not a Heap"``) ` ` `  `# This code has been  ` `# contributed by Yash Agrawal `

## C#

 `/* C# program to checks if a binary tree is max heap or not */` `using` `System; ` ` `  `// A Binary Tree node  ` `public` `class` `Node  ` `{  ` `    ``public` `int` `key;  ` `    ``public` `Node left, right;  ` ` `  `    ``public` `Node(``int` `k)  ` `    ``{  ` `        ``key = k;  ` `        ``left = right = ``null``;  ` `    ``}  ` `}  ` ` `  `class` `Is_BinaryTree_MaxHeap  ` `{  ` `    ``/* This function counts the number ` `    ``of nodes in a binary tree */` `    ``int` `countNodes(Node root)  ` `    ``{  ` `        ``if``(root == ``null``)  ` `            ``return` `0;  ` `        ``return``(1 + countNodes(root.left) + countNodes(root.right));  ` `    ``}  ` `     `  `    ``/* This function checks if the  ` `    ``binary tree is complete or not */` `    ``Boolean isCompleteUtil(Node root, ``int` `index, ``int` `number_nodes)  ` `    ``{  ` `        ``// An empty tree is complete  ` `        ``if``(root == ``null``)  ` `            ``return` `true``;  ` `         `  `        ``// If index assigned to current node is more than  ` `        ``// number of nodes in tree, then tree is not complete  ` `        ``if``(index >= number_nodes)  ` `            ``return` `false``;  ` `         `  `        ``// Recur for left and right subtrees  ` `        ``return` `isCompleteUtil(root.left, 2*index+1, number_nodes) &&  ` `            ``isCompleteUtil(root.right, 2*index+2, number_nodes);  ` `         `  `    ``}  ` `     `  `    ``// This Function checks the heap property in the tree.  ` `    ``Boolean isHeapUtil(Node root)  ` `    ``{  ` `        ``// Base case : single node satisfies property  ` `        ``if``(root.left == ``null` `&& root.right==``null``)  ` `            ``return` `true``;  ` `         `  `        ``// node will be in second last level  ` `        ``if``(root.right == ``null``)  ` `        ``{  ` `            ``// check heap property at Node  ` `            ``// No recursive call , because no need to check last level  ` `            ``return` `root.key >= root.left.key;  ` `        ``}  ` `        ``else` `        ``{  ` `            ``// Check heap property at Node and  ` `            ``// Recursive check heap property at left and right subtree  ` `            ``if``(root.key >= root.left.key && root.key >= root.right.key)  ` `                ``return` `isHeapUtil(root.left) && isHeapUtil(root.right);  ` `            ``else` `                ``return` `false``;  ` `        ``}  ` `    ``}  ` `     `  `    ``// Function to check binary tree is a Heap or Not.  ` `    ``Boolean isHeap(Node root)  ` `    ``{  ` `        ``if``(root == ``null``)  ` `            ``return` `true``;  ` `         `  `        ``// These two are used in isCompleteUtil()  ` `        ``int` `node_count = countNodes(root);  ` `         `  `        ``if``(isCompleteUtil(root, 0 , node_count)==``true` `&& isHeapUtil(root)==``true``)  ` `            ``return` `true``;  ` `        ``return` `false``;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main(String []args)  ` `    ``{  ` `        ``Is_BinaryTree_MaxHeap bt = ``new` `Is_BinaryTree_MaxHeap();  ` `         `  `        ``Node root = ``new` `Node(10);  ` `        ``root.left = ``new` `Node(9);  ` `        ``root.right = ``new` `Node(8);  ` `        ``root.left.left = ``new` `Node(7);  ` `        ``root.left.right = ``new` `Node(6);  ` `        ``root.right.left = ``new` `Node(5);  ` `        ``root.right.right = ``new` `Node(4);  ` `        ``root.left.left.left = ``new` `Node(3);  ` `        ``root.left.left.right = ``new` `Node(2);  ` `        ``root.left.right.left = ``new` `Node(1);  ` ` `  `        ``if``(bt.isHeap(root) == ``true``)  ` `            ``Console.WriteLine(``"Given binary tree is a Heap"``);  ` `        ``else` `            ``Console.WriteLine(``"Given binary tree is not a Heap"``);  ` `    ``}  ` `}  ` ` `  `// This code has been contributed by Arnab Kundu `

Output:

`Given binary tree is a Heap`