Getting Started with Plotly-Python

The Plotly Python library is an interactive open-source library. This can be a very helpful tool for data visualization and understanding the data simply and easily. plotly graph objects are a high-level interface to plotly which are easy to use. It can plot various types of graphs and charts like scatter plots, line charts, bar charts, box plots, histograms, pie charts, etc. 

So you all must be wondering why plotly over other visualization tools or libraries? Here’s the answer – 

  • Plotly has hover tool capabilities that allow us to detect any outliers or anomalies in a large number of data points.
  • It is visually attractive that can be accepted by a wide range of audiences.
  • It allows us for the endless customization of our graphs that makes our plot more meaningful and understandable for others.

Ok, enough theory let’s start.

Installation:

To install this module type the below command in the terminal.



pip install plotly

Getting Started

Let’s create various plots using this module

  • Scatter Plot:  Scatter plot represent values for two different numeric variables. They are mainly used for representation of relationship between two variables.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import all required libraries
import numpy as np
import plotly
import plotly.graph_objects as go
import plotly.offline as pyo
from plotly.offline import init_notebook_mode
  
init_notebook_mode(connected=True)
  
# generating 150 random integers
# from 1 to 50
x = np.random.randint(low=1, high=50, size=150)*0.1
  
# generating 150 random integers
# from 1 to 50
y = np.random.randint(low=1, high=50, size=150)*0.1
  
# plotting scatter plot
fig = go.Figure(data=go.Scatter(x=x, y=y, mode='markers'))
  
fig.show()

chevron_right


Output:    

  • Bar charts: Bar charts are used when we want to compare different groups of data and make inference of which groups are highest and which groups are comon and compare how one group is performing compared to others.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import all required libraries
import numpy as np
import plotly
import plotly.graph_objects as go
import plotly.offline as pyo
from plotly.offline import init_notebook_mode
  
init_notebook_mode(connected = True
  
# countries on x-axis
countries=['India', 'canada',
           'Australia','Brazil',
           'Mexico','Russia',
           'Germany','Switzerland',
           'Texas'
  
# plotting corresponding y for each 
# country in x 
fig = go.Figure([go.Bar(x=countries,
                        y=[80,70,60,50,
                           40,50,60,70,80])]) 
  
fig.show()

chevron_right


Output:

  • Pie chart: A pie chart represents the distribution of different variables among total. In pie chart each slice shows it’s contribution to the total amount.

Python3



filter_none

edit
close

play_arrow

link
brightness_4
code

# import all required libraries
import numpy as np
import plotly
import plotly.graph_objects as go
import plotly.offline as pyo
from plotly.offline import init_notebook_mode
  
init_notebook_mode(connected = True
  
# different individual parts in 
# total chart
countries=['India', 'canada'
           'Australia','Brazil',
           'Mexico','Russia',
           'Germany','Switzerland',
           'Texas'
  
# values corresponding to each 
# individual country present in
# countries
values = [4500, 2500, 1053, 500,
          3200, 1500, 1253, 600, 3500
  
# plotting pie chart
fig = go.Figure(data=[go.Pie(labels=countries,
                      values=values)])
  
fig.show()

chevron_right


Output:

  • Histogram: A histogram plots the continuous distribution of variable as series of bars and each bar indicates the frequency of the occurring value in a variable. In order to use a histogram, we simply require a variable that takes continuous numeric values

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import all required libraries
import numpy as np
import plotly
import plotly.graph_objects as go
import plotly.offline as pyo
from plotly.offline import init_notebook_mode
  
init_notebook_mode(connected = True
  
# save the state of random
np.random.seed(42)  
  
# generating 250 random numbers
x = np.random.randn(250
  
# plotting histogram for x
fig = go.Figure(data=[go.Histogram(x=x)]) 
  
fig.show()

chevron_right


Output:

  • Box plot: A box plot is the representation of statistical summary. Minimum, First Quartile, Median, Third Quartile, Maximum.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import all required libraries
import numpy as np
import plotly
import plotly.graph_objects as go
import plotly.offline as pyo
from plotly.offline import init_notebook_mode
  
init_notebook_mode(connected = True
  
np.random.seed(42)
  
# generating 50 random numbers
y = np.random.randn(50
  
# generating 50 random numbers
y1 = np.random.randn(50
fig = go.Figure()  
  
# updating the figure with y
fig.add_trace(go.Box(y=y)) 
  
# updating the figure with y1
fig.add_trace(go.Box(y=y1)) 
  
fig.show()

chevron_right


Output:




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : nidhi_biet

Article Tags :

1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.