Find the element before which all the elements are smaller than it, and after which all are greater

Given an array, find an element before which all elements are smaller than it, and after which all are greater than it. Return the index of the element if there is such an element, otherwise, return -1.

Examples:

Input: arr[] = {5, 1, 4, 3, 6, 8, 10, 7, 9};
Output: 4
Explanation: All elements on left of arr[4] are smaller than it
and all elements on right are greater.

Input: arr[] = {5, 1, 4, 4};
Output: -1
Explanation : No such index exits.

Expected time complexity: O(n).

A simple solution is to consider every element one by one. For every element, compare it with all elements on the left and all elements on right. Time complexity of this solution is O(n2).

An Efficient Solution can solve this problem in O(n) time using O(n) extra space. Below is detailed solution.

  1. Create two arrays leftMax[] and rightMin[].
  2. Traverse input array from left to right and fill leftMax[] such that leftMax[i] contains maximum element from 0 to i-1 in input array.
  3. Traverse input array from right to left and fill rightMin[] such that rightMin[i] contains minimum element from to n-1 to i+1 in input array.
  4. Traverse input array. For every element arr[i], check if arr[i] is greater than leftMax[i] and smaller than rightMin[i]. If yes, return i.

A Further Optimization to the above approach is to use only one extra array and traverse input array only twice. The first traversal is the same as above and fills leftMax[]. Next traversal traverses from the right and keeps track of the minimum. The second traversal also finds the required element.

Below image is a dry run of the above approach:

Below is the implementation of above approach.

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the element which is greater than
// all left elements and smaller than all right elements.
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the index of the element which is greater than
// all left elements and smaller than all right elements.
int findElement(int arr[], int n)
{
    // leftMax[i] stores maximum of arr[0..i-1]
    int leftMax[n];
    leftMax[0] = INT_MIN;
  
    // Fill leftMax[]1..n-1]
    for (int i = 1; i < n; i++)
        leftMax[i] = max(leftMax[i-1], arr[i-1]);
  
    // Initialize minimum from right
    int rightMin = INT_MAX;
  
    // Traverse array from right
    for (int i=n-1; i>=0; i--)
    {
        // Check if we found a required element
        if (leftMax[i] < arr[i] && rightMin > arr[i])
             return i;
  
        // Update right minimum
        rightMin = min(rightMin, arr[i]);
    }
  
    // If there was no element matching criteria
    return -1;
}
  
// Driver program
int main()
{
    int arr[] = {5, 1, 4, 3, 6, 8, 10, 7, 9};
    int n = sizeof arr / sizeof arr[0];
    cout << "Index of the element is " << findElement(arr, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the element which is greater than
// all left elements and smaller than all right elements.
import java.io.*;
import java.util.*;
  
public class GFG {
       static int findElement(int[] arr, int n)
       {
              // leftMax[i] stores maximum of arr[0..i-1] 
              int[] leftMax = new int[n];
              leftMax[0] = Integer.MIN_VALUE;
  
              // Fill leftMax[]1..n-1] 
              for (int i = 1; i < n; i++)
                   leftMax[i] = Math.max(leftMax[i - 1], arr[i - 1]);
                     
              // Initialize minimum from right 
              int rightMin = Integer.MAX_VALUE;
  
              // Traverse array from right 
              for (int i = n - 1; i >= 0; i--) 
              {
                   // Check if we found a required element
                   if (leftMax[i] < arr[i] && rightMin > arr[i])
                       return i;
  
                   // Update right minimum
                   rightMin = Math.min(rightMin, arr[i]); 
              }
                 
              // If there was no element matching criteria 
              return -1;
  
                
       }
  
       // Driver code
       public static void main(String args[])
       {
              int[] arr = {5, 1, 4, 3, 6, 8, 10, 7, 9};
              int n = arr.length;
              System.out.println("Index of the element is "
              findElement(arr, n));
       }
  
       // This code is contributed
       // by rachana soma
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the element which is greater than 
# all left elements and smaller than all right elements. 
  
def findElement(arr, n): 
   
    # leftMax[i] stores maximum of arr[0..i-1] 
    leftMax = [None] *
    leftMax[0] = float('-inf'
  
    # Fill leftMax[]1..n-1] 
    for i in range(1, n): 
        leftMax[i] = max(leftMax[i-1], arr[i-1]) 
  
    # Initialize minimum from right 
    rightMin = float('inf'
  
    # Traverse array from right 
    for i in range(n-1, -1, -1): 
       
        # Check if we found a required element 
        if leftMax[i] < arr[i] and rightMin > arr[i]: 
            return
  
        # Update right minimum 
        rightMin = min(rightMin, arr[i]) 
       
    # If there was no element matching criteria 
    return -1 
  
# Driver program 
if __name__ == "__main__"
  
    arr = [5, 1, 4, 3, 6, 8, 10, 7, 9
    n = len(arr) 
    print("Index of the element is", findElement(arr, n))
   
# This code is contributed by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the element which is greater than
// all left elements and smaller than all right elements.
using System;
  
class GFG
{
static int findElement(int[] arr, int n)
{
    // leftMax[i] stores maximum of arr[0..i-1]
    int[] leftMax = new int[n];
    leftMax[0] = int.MinValue;
  
    // Fill leftMax[]1..n-1]
    for (int i = 1; i < n; i++)
        leftMax[i] = Math.Max(leftMax[i - 1], arr[i - 1]);
  
    // Initialize minimum from right
    int rightMin = int.MaxValue;
  
    // Traverse array from right
    for (int i=n-1; i>=0; i--)
    {
        // Check if we found a required element
        if (leftMax[i] < arr[i] && rightMin > arr[i])
            return i;
  
        // Update right minimum
        rightMin = Math.Min(rightMin, arr[i]);
    }
  
    // If there was no element matching criteria
    return -1;
}
  
// Driver program
public static void Main()
{
    int[] arr = {5, 1, 4, 3, 6, 8, 10, 7, 9};
    int n = arr.Length;
    Console.Write( "Index of the element is " + findElement(arr, n));
}
}
  
// This code is contributed 
// by Akanksha Rai(Abby_akku)

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the element 
// which is greater than all left 
// elements and smaller than all 
// right elements. 
  
function findElement($arr, $n
    // leftMax[i] stores maximum 
    // of arr[0..i-1] 
    $leftMax = array(0); 
    $leftMax[0] = PHP_INT_MIN; 
  
    // Fill leftMax[]1..n-1] 
    for ($i = 1; $i < $n; $i++) 
        $leftMax[$i] = max($leftMax[$i - 1],
                               $arr[$i - 1]); 
  
    // Initialize minimum from right 
    $rightMin = PHP_INT_MAX; 
  
    // Traverse array from right 
    for ($i = $n - 1; $i >= 0; $i--) 
    
        // Check if we found a required
        // element 
        if ($leftMax[$i] < $arr[$i] && 
            $rightMin > $arr[$i]) 
            return $i
  
        // Update right minimum 
        $rightMin = min($rightMin, $arr[$i]); 
    
  
    // If there was no element
    // matching criteria 
    return -1; 
  
// Driver Code 
$arr = array(5, 1, 4, 3, 6, 8, 10, 7, 9); 
$n = count($arr);
echo "Index of the element is "
           findElement($arr, $n); 
  
// This code is contributed
// by Sach_Code
?>

chevron_right


Output:

Index of the element is 4

Time Complexity: O(n)
Auxiliary Space: O(n)

Thanks to Gaurav Ahirwar for suggesting above solution.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



My Personal Notes arrow_drop_up