Skip to content
Related Articles
Smallest subarray of size greater than K with sum greater than a given value
• Difficulty Level : Hard
• Last Updated : 03 May, 2021

Given an array, arr[] of size N, two positive integers K and S, the task is to find the length of the smallest subarray of size greater than K, whose sum is greater than S.

Examples:

Input: arr[] = {1, 2, 3, 4, 5}, K = 1, S = 8
Output: 2
Explanation:
Smallest subarray with sum greater than S(=8) is {4, 5}
Therefore, the required output is 2.

Input: arr[] = {1, 3, 5, 1, 8, 2, 4}, K= 2, S= 13
Output: 3

Approach: The problem can be solved using Sliding Window Technique. Follow the steps below to solve the problem:

1. Initialize two variables say, i = 0 and j = 0 both pointing to the start of array i.e index 0.
2. Initialize a variable sum to store the sum of the subArray currently being processed.
3. Traverse the array, arr[] and by incrementing j and adding arr[j]
4. Take our the window length or the length of the current subArray which is given by j-i+1 (+1 because the indexes start from zero) .
5. Firstly, check if the size of the current subArray i.e winLen  here is greater than K. if this is not the case increment the j value and continue the loop.
6. Else , we get that the size of the current subArray is greater than K, now we have to check if we meet the second condition i.e sum of the current Subarray is greater than S.
7. If this is the case, we update minLength variable which stores the minimum length of the subArray satisfying the above conditions.
8. At this time , we check if the size of the subArray can be reduced (by incrementing i such that it still is greater than K and sum is also greater than S. We constantly remove the ith element of the array from the sum to reduce the subArray size in the While loop and then increment j such that we move to the next element in the array .the
9. Finally, print the minimum length of required subarray obtained that satisfies the conditions.

Below is the implementation of the above approach:

## C++

 `// C++ program to implement``// the above approach` `#include ``using` `namespace` `std;` `// Function to find the length of the``// smallest subarray of size > K with``// sum greater than S``int` `smallestSubarray(``int` `K, ``int` `S,``                     ``int` `arr[], ``int` `N)``{``    ``// Store the first index of``    ``// the current subarray``    ``int` `start = 0;` `    ``// Store the last index of``    ``// the the current subarray``    ``int` `end = 0;` `    ``// Store the sum of the``    ``// current subarray``    ``int` `currSum = arr;` `    ``// Store the length of``    ``// the smallest subarray``    ``int` `res = INT_MAX;` `    ``while` `(end < N - 1) {` `        ``// If sum of the current subarray <= S``        ``// or length of current subarray <= K``        ``if` `(currSum <= S``            ``|| (end - start + 1) <= K) {``            ``// Increase the subarray``            ``// sum and size``            ``currSum += arr[++end];``        ``}` `        ``// Otherwise``        ``else` `{` `            ``// Update to store the minimum``            ``// size of subarray obtained``            ``res = min(res, end - start + 1);` `            ``// Decrement current subarray``            ``// size by removing first element``            ``currSum -= arr[start++];``        ``}``    ``}` `    ``// Check if it is possible to reduce``    ``// the length of the current window``    ``while` `(start < N) {``        ``if` `(currSum > S``            ``&& (end - start + 1) > K)``            ``res = min(res, (end - start + 1));` `        ``currSum -= arr[start++];``    ``}``    ``return` `res;``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 1, 2, 3, 4, 5 };``    ``int` `K = 1, S = 8;``    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr);``    ``cout << smallestSubarray(K, S, arr, N);``}`

## Java

 `// Java program to implement``// the above approach``import` `java.io.*;` `class` `GFG{` `// Function to find the length of the``// smallest subarray of size > K with``// sum greater than S``public` `static` `int` `smallestSubarray(``int` `k, ``int` `s,``                                   ``int``[] array, ``int` `N)``{``    ` `        ``int` `i=``0``;``        ``int` `j=``0``;``        ``int` `minLen = Integer.MAX_VALUE;``        ``int` `sum = ``0``;` `        ``while``(j < N)``        ``{``            ``sum += array[j];``            ``int` `winLen = j-i+``1``;``            ``if``(winLen <= k)``                ``j++;``            ``else``{``                ``if``(sum > s)``                ``{``                    ``minLen = Math.min(minLen,winLen);``                    ``while``(sum > s)``                    ``{``                        ``sum -= array[i];``                        ``i++;``                    ``}``                    ``j++;``                ``}``            ``}``        ``}``        ``return` `minLen;``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int``[] arr = { ``1``, ``2``, ``3``, ``4``, ``5` `};``    ``int` `K = ``1``, S = ``8``;``    ``int` `N = arr.length;``    ` `    ``System.out.print(smallestSubarray(K, S, arr, N));``}``}` `// This code is contributed by akhilsaini`

## Python3

 `# Python3 program to implement``# the above approach``import` `sys` `# Function to find the length of the``# smallest subarray of size > K with``# sum greater than S``def` `smallestSubarray(K, S, arr, N):``  ` `  ``# Store the first index of``  ``# the current subarray``  ``start ``=` `0` `  ``# Store the last index of``  ``# the the current subarray``  ``end ``=` `0` `  ``# Store the sum of the``  ``# current subarray``  ``currSum ``=` `arr[``0``]` `  ``# Store the length of``  ``# the smallest subarray``  ``res ``=` `sys.maxsize` `  ``while` `end < N ``-` `1``:` `      ``# If sum of the current subarray <= S``      ``# or length of current subarray <= K``      ``if` `((currSum <``=` `S) ``or``         ``((end ``-` `start ``+` `1``) <``=` `K)):``          ` `          ``# Increase the subarray``          ``# sum and size``          ``end ``=` `end ``+` `1``;``          ``currSum ``+``=` `arr[end]` `      ``# Otherwise``      ``else``:` `          ``# Update to store the minimum``          ``# size of subarray obtained``          ``res ``=` `min``(res, end ``-` `start ``+` `1``)` `          ``# Decrement current subarray``          ``# size by removing first element``          ``currSum ``-``=` `arr[start]``          ``start ``=` `start ``+` `1` `  ``# Check if it is possible to reduce``  ``# the length of the current window``  ``while` `start < N:``      ``if` `((currSum > S) ``and``         ``((end ``-` `start ``+` `1``) > K)):``          ``res ``=` `min``(res, (end ``-` `start ``+` `1``))``      ` `      ``currSum ``-``=` `arr[start]``      ``start ``=` `start ``+` `1` `  ``return` `res;` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ` `  ``arr ``=` `[ ``1``, ``2``, ``3``, ``4``, ``5` `]``  ``K ``=` `1``  ``S ``=` `8``  ``N ``=` `len``(arr)``  ` `  ``print``(smallestSubarray(K, S, arr, N))` `# This code is contributed by akhilsaini`

## C#

 `// C# program to implement``// the above approach``using` `System;` `class` `GFG{` `// Function to find the length of the``// smallest subarray of size > K with``// sum greater than S``static` `int` `smallestSubarray(``int` `K, ``int` `S,``                            ``int``[] arr, ``int` `N)``{``    ` `    ``// Store the first index of``    ``// the current subarray``    ``int` `start = 0;` `    ``// Store the last index of``    ``// the the current subarray``    ``int` `end = 0;` `    ``// Store the sum of the``    ``// current subarray``    ``int` `currSum = arr;` `    ``// Store the length of``    ``// the smallest subarray``    ``int` `res = ``int``.MaxValue;` `    ``while` `(end < N - 1)``    ``{``        ` `        ``// If sum of the current subarray <= S``        ``// or length of current subarray <= K``        ``if` `(currSum <= S ||``           ``(end - start + 1) <= K)``        ``{``            ` `            ``// Increase the subarray``            ``// sum and size``            ``currSum += arr[++end];``        ``}` `        ``// Otherwise``        ``else``        ``{` `            ``// Update to store the minimum``            ``// size of subarray obtained``            ``res = Math.Min(res, end - start + 1);` `            ``// Decrement current subarray``            ``// size by removing first element``            ``currSum -= arr[start++];``        ``}``    ``}` `    ``// Check if it is possible to reduce``    ``// the length of the current window``    ``while` `(start < N)``    ``{``        ``if` `(currSum > S && (end - start + 1) > K)``            ``res = Math.Min(res, (end - start + 1));` `        ``currSum -= arr[start++];``    ``}``    ``return` `res;``}` `// Driver Code``static` `public` `void` `Main()``{``    ``int``[] arr = { 1, 2, 3, 4, 5 };``    ``int` `K = 1, S = 8;``    ``int` `N = arr.Length;``    ` `    ``Console.Write(smallestSubarray(K, S, arr, N));``}``}` `// This code is contributed by akhilsaini`

## Javascript

 ``

Output:
`2`

Time Complexity: O(N)
Auxiliary Space:O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up