# Length of longest subarray in which elements greater than K are more than elements not greater than K

Given an array arr[] of length N. The task is to find the length of the longest subarray in which elements greater than a given number K are more than elements not greater than K.

Examples:

Input : N = 5, K = 2, arr[]={ 1, 2, 3, 4, 1 }
Output : 3
The subarray [2, 3, 4] or [3, 4, 1] satisfy the given condition, and there is no subarray of
length 4 or 5 which will hold the given condition, so the answer is 3.

Input : N = 4, K = 2, arr[]={ 6, 5, 3, 4 }
Output : 4

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• Idea is to use the concept of binary search over Partial Sum .
• First, replace the elements which are greater than K by 1 and other elements by -1 and calculate the prefix sum over it. Now if a subarray has a sum greater than 0, it implies that it holds more elements greater than K than elements which are less than K.
• To find the answer use binary search over the answer. In each step of binary search, check every subarray of that length and then decide whether to go for larger length or not.

Below is the implementation of above Approach:

## C++

 `#include ` `using` `namespace` `std; ` `// C++ implementation of above approach ` ` `  `// Function to find the length of a  ` `// longest subarray in which elements  ` `// greater than K are more than  ` `// elements not greater than K ` `int` `LongestSubarray(``int` `a[], ``int` `n, ``int` `k) ` `{ ` ` `  `    ``int` `pre[n] = { 0 }; ` ` `  `    ``// Create a new array in which we store 1 ` `    ``// if a[i] > k otherwise we store -1. ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``if` `(a[i] > k) ` `            ``pre[i] = 1; ` `        ``else` `            ``pre[i] = -1; ` `    ``} ` ` `  `    ``// Taking prefix sum over it ` `    ``for` `(``int` `i = 1; i < n; i++)  ` `        ``pre[i] = pre[i - 1] + pre[i]; ` ` `  `    ``// len will store maximum ` `    ``// length of subarray ` `    ``int` `len = 0;  ` ` `  `    ``int` `lo = 1, hi = n; ` ` `  `    ``while` `(lo <= hi) { ` `        ``int` `mid = (lo + hi) / 2; ` ` `  `        ``// This indicate there is at least one ` `        ``// subarray of length mid that has sum > 0 ` `        ``bool` `ok = ``false``; ` ` `  `        ``// Check every subarray of length mid if  ` `        ``// it has sum > 0 or not if sum > 0 then it ` `        ``// will satisfy our required condition ` `        ``for` `(``int` `i = mid - 1; i < n; i++) { ` ` `  `            ``// x will store the sum of  ` `            ``// subarray of length mid ` `            ``int` `x = pre[i]; ` `            ``if` `(i - mid >= 0) ` `                ``x -= pre[i - mid]; ` ` `  `            ``// Satisfy our given condition ` `            ``if` `(x > 0) {  ` `                ``ok = ``true``; ` `                ``break``; ` `            ``} ` `        ``} ` ` `  `        ``// Check for higher length as we ` `        ``// get length mid ` `        ``if` `(ok == ``true``) { ` `            ``len = mid; ` `            ``lo = mid + 1; ` `        ``} ` `        ``// Check for lower length as we ` `        ``// did not get length mid ` `        ``else` `            ``hi = mid - 1; ` `    ``} ` ` `  `    ``return` `len; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a[] = { 2, 3, 4, 5, 3, 7 }; ` `    ``int` `k = 3; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a); ` ` `  `    ``cout << LongestSubarray(a, n, k); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of above approach ` `class` `GFG  ` `{ ` ` `  `// Function to find the length of a  ` `// longest subarray in which elements  ` `// greater than K are more than  ` `// elements not greater than K ` `static` `int` `LongestSubarray(``int` `a[], ``int` `n, ``int` `k) ` `{ ` ` `  `    ``int` `[]pre = ``new` `int``[n]; ` ` `  `    ``// Create a new array in which we store 1 ` `    ``// if a[i] > k otherwise we store -1. ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``if` `(a[i] > k) ` `            ``pre[i] = ``1``; ` `        ``else` `            ``pre[i] = -``1``; ` `    ``} ` ` `  `    ``// Taking prefix sum over it ` `    ``for` `(``int` `i = ``1``; i < n; i++)  ` `        ``pre[i] = pre[i - ``1``] + pre[i]; ` ` `  `    ``// len will store maximum ` `    ``// length of subarray ` `    ``int` `len = ``0``;  ` ` `  `    ``int` `lo = ``1``, hi = n; ` ` `  `    ``while` `(lo <= hi) ` `    ``{ ` `        ``int` `mid = (lo + hi) / ``2``; ` ` `  `        ``// This indicate there is at least one ` `        ``// subarray of length mid that has sum > 0 ` `        ``boolean` `ok = ``false``; ` ` `  `        ``// Check every subarray of length mid if  ` `        ``// it has sum > 0 or not if sum > 0 then it ` `        ``// will satisfy our required condition ` `        ``for` `(``int` `i = mid - ``1``; i < n; i++) ` `        ``{ ` ` `  `            ``// x will store the sum of  ` `            ``// subarray of length mid ` `            ``int` `x = pre[i]; ` `            ``if` `(i - mid >= ``0``) ` `                ``x -= pre[i - mid]; ` ` `  `            ``// Satisfy our given condition ` `            ``if` `(x > ``0``)  ` `            ``{  ` `                ``ok = ``true``; ` `                ``break``; ` `            ``} ` `        ``} ` ` `  `        ``// Check for higher length as we ` `        ``// get length mid ` `        ``if` `(ok == ``true``)  ` `        ``{ ` `            ``len = mid; ` `            ``lo = mid + ``1``; ` `        ``} ` `         `  `        ``// Check for lower length as we ` `        ``// did not get length mid ` `        ``else` `            ``hi = mid - ``1``; ` `    ``} ` ` `  `    ``return` `len; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `a[] = { ``2``, ``3``, ``4``, ``5``, ``3``, ``7` `}; ` `    ``int` `k = ``3``; ` `    ``int` `n = a.length; ` ` `  `    ``System.out.println(LongestSubarray(a, n, k)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 implementation of above approach ` ` `  `# Function to find the Length of a ` `# longest subarray in which elements ` `# greater than K are more than ` `# elements not greater than K ` `def` `LongestSubarray(a, n, k): ` ` `  `    ``pre ``=` `[``0` `for` `i ``in` `range``(n)] ` ` `  `    ``# Create a new array in which we store 1 ` `    ``# if a[i] > k otherwise we store -1. ` `    ``for` `i ``in` `range``(n): ` `        ``if` `(a[i] > k): ` `            ``pre[i] ``=` `1` `        ``else``: ` `            ``pre[i] ``=` `-``1` ` `  `    ``# Taking prefix sum over it ` `    ``for` `i ``in` `range``(``1``, n): ` `        ``pre[i] ``=` `pre[i ``-` `1``] ``+` `pre[i] ` ` `  `    ``# Len will store maximum ` `    ``# Length of subarray ` `    ``Len` `=` `0` ` `  `    ``lo ``=` `1` `    ``hi ``=` `n ` ` `  `    ``while` `(lo <``=` `hi): ` `        ``mid ``=` `(lo ``+` `hi) ``/``/` `2` ` `  `        ``# This indicate there is at least one ` `        ``# subarray of Length mid that has sum > 0 ` `        ``ok ``=` `False` ` `  `        ``# Check every subarray of Length mid if ` `        ``# it has sum > 0 or not if sum > 0 then it ` `        ``# will satisfy our required condition ` `        ``for` `i ``in` `range``(mid ``-` `1``, n): ` ` `  `            ``# x will store the sum of ` `            ``# subarray of Length mid ` `            ``x ``=` `pre[i] ` `            ``if` `(i ``-` `mid >``=` `0``): ` `                ``x ``-``=` `pre[i ``-` `mid] ` ` `  `            ``# Satisfy our given condition ` `            ``if` `(x > ``0``): ` `                ``ok ``=` `True` `                ``break` ` `  `        ``# Check for higher Length as we ` `        ``# get Length mid ` `        ``if` `(ok ``=``=` `True``): ` `            ``Len` `=` `mid ` `            ``lo ``=` `mid ``+` `1` `             `  `        ``# Check for lower Length as we ` `        ``# did not get Length mid ` `        ``else``: ` `            ``hi ``=` `mid ``-` `1` ` `  `    ``return` `Len` ` `  `# Driver code ` `a ``=` `[``2``, ``3``, ``4``, ``5``, ``3``, ``7``] ` `k ``=` `3` `n ``=` `len``(a) ` ` `  `print``(LongestSubarray(a, n, k)) ` ` `  `# This code is contributed by Mohit Kumar `

## C#

 `// C# implementation of above approach ` `using` `System; ` ` `  `class` `GFG  ` `{ ` ` `  `// Function to find the length of a  ` `// longest subarray in which elements  ` `// greater than K are more than  ` `// elements not greater than K ` `static` `int` `LongestSubarray(``int``[] a, ``int` `n, ``int` `k) ` `{ ` `    ``int` `[]pre = ``new` `int``[n]; ` ` `  `    ``// Create a new array in which we store 1 ` `    ``// if a[i] > k otherwise we store -1. ` `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` `        ``if` `(a[i] > k) ` `            ``pre[i] = 1; ` `        ``else` `            ``pre[i] = -1; ` `    ``} ` ` `  `    ``// Taking prefix sum over it ` `    ``for` `(``int` `i = 1; i < n; i++)  ` `        ``pre[i] = pre[i - 1] + pre[i]; ` ` `  `    ``// len will store maximum ` `    ``// length of subarray ` `    ``int` `len = 0;  ` ` `  `    ``int` `lo = 1, hi = n; ` ` `  `    ``while` `(lo <= hi) ` `    ``{ ` `        ``int` `mid = (lo + hi) / 2; ` ` `  `        ``// This indicate there is at least one ` `        ``// subarray of length mid that has sum > 0 ` `        ``bool` `ok = ``false``; ` ` `  `        ``// Check every subarray of length mid if  ` `        ``// it has sum > 0 or not if sum > 0 then it ` `        ``// will satisfy our required condition ` `        ``for` `(``int` `i = mid - 1; i < n; i++) ` `        ``{ ` ` `  `            ``// x will store the sum of  ` `            ``// subarray of length mid ` `            ``int` `x = pre[i]; ` `            ``if` `(i - mid >= 0) ` `                ``x -= pre[i - mid]; ` ` `  `            ``// Satisfy our given condition ` `            ``if` `(x > 0)  ` `            ``{  ` `                ``ok = ``true``; ` `                ``break``; ` `            ``} ` `        ``} ` ` `  `        ``// Check for higher length as we ` `        ``// get length mid ` `        ``if` `(ok == ``true``)  ` `        ``{ ` `            ``len = mid; ` `            ``lo = mid + 1; ` `        ``} ` `         `  `        ``// Check for lower length as we ` `        ``// did not get length mid ` `        ``else` `            ``hi = mid - 1; ` `    ``} ` `    ``return` `len; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int``[] a = { 2, 3, 4, 5, 3, 7 }; ` `    ``int` `k = 3; ` `    ``int` `n = a.Length; ` ` `  `    ``Console.WriteLine(LongestSubarray(a, n, k)); ` `} ` `} ` ` `  `// This code is contributed by Code_Mech `

Output:

```5
```

Time Complexity: O(N*logN)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.