Count nodes in the given tree whose weight is a fibonacci number

Given a tree with the weights of all the nodes, the task is to count the number of nodes whose weight is a Fibonacci number.

Examples:

Input:

Output: 2
Explanation:
Nodes having weights 5 and 8 are fibonacci nodes.

Input:

Output: 3
Explanation:
Nodes having weights 1, 3 and 8 are fibonacci nodes.

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The idea is to perform a dfs on the tree and for every node, check whether the weight is a Fibonacci number or not.

1. Generate a hash containing all the Fibonacci numbers using Dynamic programming.
2. Using depth-first search traversal, traverse through every node of the tree and check whether the node is a Fibonacci number or not by checking if that element is present in the precomputed hash or not.
3. Finally, print the total number of Fibonacci nodes.

Below is the implementation of above approach:

C++

 `// C++ program to count the number of nodes ` `// in the tree whose weight is a ` `// Fibonacci number ` ` `  `#include ` `using` `namespace` `std; ` ` `  `const` `int` `sz = 1e5; ` `int` `ans = 0; ` ` `  `vector<``int``> graph[100]; ` `vector<``int``> weight(100); ` ` `  `// To store all fibonacci numbers ` `set<``int``> fib; ` ` `  `// Function to generate fibonacci numbers using ` `// Dynamic Programming and create hash table ` `// to check Fibonacci numbers ` `void` `fibonacci() ` `{ ` `    ``// Inserting the first two Fibonacci numbers ` `    ``// in the hash ` `    ``int` `prev = 0, curr = 1, len = 2; ` `    ``fib.insert(prev); ` `    ``fib.insert(curr); ` ` `  `    ``// Computing the Fibonacci numbers until ` `    ``// the maximum number and storing them ` `    ``// in the hash ` `    ``while` `(len <= sz) { ` `        ``int` `temp = curr + prev; ` `        ``fib.insert(temp); ` `        ``prev = curr; ` `        ``curr = temp; ` `        ``len++; ` `    ``} ` `} ` ` `  `// Function to perform dfs ` `void` `dfs(``int` `node, ``int` `parent) ` `{ ` `    ``// Check if the weight of the node ` `    ``// is a Fibonacci number or not ` `    ``if` `(fib.find(weight[node]) != fib.end()) ` `        ``ans += 1; ` ` `  `    ``// Performing DFS to iterate the ` `    ``// remaining nodes ` `    ``for` `(``int` `to : graph[node]) { ` `        ``if` `(to == parent) ` `            ``continue``; ` `        ``dfs(to, node); ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``// Weights of the node ` `    ``weight[1] = 5; ` `    ``weight[2] = 10; ` `    ``weight[3] = 11; ` `    ``weight[4] = 8; ` `    ``weight[5] = 6; ` ` `  `    ``// Edges of the tree ` `    ``graph[1].push_back(2); ` `    ``graph[2].push_back(3); ` `    ``graph[2].push_back(4); ` `    ``graph[1].push_back(5); ` ` `  `    ``// Generate fibonacci numbers ` `    ``fibonacci(); ` ` `  `    ``// Call the dfs function to ` `    ``// traverse through the tree ` `    ``dfs(1, 1); ` ` `  `    ``cout << ans << endl; ` ` `  `    ``return` `0; ` `} `

Python3

 `# Python 3 program to count the number of nodes ` `# in the tree whose weight is a ` `# Fibonacci number ` `sz ``=` `1e5` `ans ``=` `0` ` `  `graph ``=` `[[] ``for` `i ``in` `range``(``100``)] ` `weight ``=` `[``0` `for` `i ``in` `range``(``100``)] ` ` `  `# To store all fibonacci numbers ` `fib ``=` `set``() ` ` `  `# Function to generate fibonacci numbers using ` `# Dynamic Programming and create hash table ` `# to check Fibonacci numbers ` `def` `fibonacci(): ` ` `  `    ``# Inserting the first two Fibonacci numbers ` `    ``# in the hash ` `    ``prev ``=` `0` `    ``curr ``=` `1` `    ``len1 ``=` `2` `    ``fib.add(prev) ` `    ``fib.add(curr) ` ` `  `    ``# Computing the Fibonacci numbers until ` `    ``# the maximum number and storing them ` `    ``# in the hash ` `    ``while` `(len1 <``=` `sz): ` `        ``temp ``=` `curr ``+` `prev ` `        ``fib.add(temp) ` `        ``prev ``=` `curr; ` `        ``curr ``=` `temp; ` `        ``len1 ``+``=` `1` ` `  `# Function to perform dfs ` `def` `dfs(node, parent): ` `    ``global` `ans ` ` `  `    ``# Check if the weight of the node ` `    ``# is a Fibonacci number or not ` `    ``if` `(weight[node] ``in` `fib): ` `        ``ans ``+``=` `1` ` `  `    ``# Performing DFS to iterate the ` `    ``# remaining nodes ` `    ``for` `to ``in` `graph[node]: ` `        ``if` `(to ``=``=` `parent): ` `            ``continue` `        ``dfs(to, node) ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``# Weights of the node ` `    ``weight[``1``] ``=` `5` `    ``weight[``2``] ``=` `10` `    ``weight[``3``] ``=` `11` `    ``weight[``4``] ``=` `8` `    ``weight[``5``] ``=` `6` ` `  `    ``# Edges of the tree ` `    ``graph[``1``].append(``2``) ` `    ``graph[``2``].append(``3``) ` `    ``graph[``2``].append(``4``) ` `    ``graph[``1``].append(``5``) ` ` `  `    ``# Generate fibonacci numbers ` `    ``fibonacci() ` ` `  `    ``# Call the dfs function to ` `    ``# traverse through the tree ` `    ``dfs(``1``, ``1``) ` ` `  `    ``print``(ans) ` ` `  `# This code is contributed by Surendra_Gangwar `

C#

 `// C# program to count the number of nodes ` `// in the tree whose weight is a ` `// Fibonacci number ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `public` `class` `GFG{ ` `   `  `static` `int` `sz = (``int``) 1e5; ` `static` `int` `ans = 0; ` `   `  `static` `List<``int``> []graph = ``new` `List<``int``>[100]; ` `static` `int` `[]weight = ``new` `int``[100]; ` `   `  `// To store all fibonacci numbers ` `static` `HashSet<``int``> fib = ``new` `HashSet<``int``>(); ` `   `  `// Function to generate fibonacci numbers using ` `// Dynamic Programming and create hash table ` `// to check Fibonacci numbers ` `static` `void` `fibonacci() ` `{ ` `    ``// Inserting the first two Fibonacci numbers ` `    ``// in the hash ` `    ``int` `prev = 0, curr = 1, len = 2; ` `    ``fib.Add(prev); ` `    ``fib.Add(curr); ` `   `  `    ``// Computing the Fibonacci numbers until ` `    ``// the maximum number and storing them ` `    ``// in the hash ` `    ``while` `(len <= sz) { ` `        ``int` `temp = curr + prev; ` `        ``fib.Add(temp); ` `        ``prev = curr; ` `        ``curr = temp; ` `        ``len++; ` `    ``} ` `} ` `   `  `// Function to perform dfs ` `static` `void` `dfs(``int` `node, ``int` `parent) ` `{ ` `    ``// Check if the weight of the node ` `    ``// is a Fibonacci number or not ` `    ``if` `(fib.Contains(weight[node])) ` `        ``ans += 1; ` `   `  `    ``// Performing DFS to iterate the ` `    ``// remaining nodes ` `    ``foreach` `(``int` `to ``in` `graph[node]) { ` `        ``if` `(to == parent) ` `            ``continue``; ` `        ``dfs(to, node); ` `    ``} ` `} ` `   `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``for``(``int` `i = 0; i < 100; i++) { ` `        ``graph[i] = ``new` `List<``int``>(); ` `    ``} ` `  `  `    ``// Weights of the node ` `    ``weight[1] = 5; ` `    ``weight[2] = 10; ` `    ``weight[3] = 11; ` `    ``weight[4] = 8; ` `    ``weight[5] = 6; ` `   `  `    ``// Edges of the tree ` `    ``graph[1].Add(2); ` `    ``graph[2].Add(3); ` `    ``graph[2].Add(4); ` `    ``graph[1].Add(5); ` `   `  `    ``// Generate fibonacci numbers ` `    ``fibonacci(); ` `   `  `    ``// Call the dfs function to ` `    ``// traverse through the tree ` `    ``dfs(1, 1); ` `   `  `    ``Console.Write(ans +``"\n"``); ` `   `  `} ` `} ` `// This code contributed by Rajput-Ji `

Output:

```2
```

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.