Related Articles

# Class 12 NCERT Solutions – Mathematics Part I – Chapter 1 Relations and Functions – Exercise 1.4 | Set 2

• Last Updated : 05 Apr, 2021

### Question 7: Is ∗ defined on the set {1, 2, 3, 4, 5} by a ∗ b = L.C.M. of a and b a binary operation? Justify your answer.

Solution:

The operation * on the set {1, 2, 3, 4, 5} is defined as

a * b = L.C.M. of a and b

Let a=3, b=5

3 * 5 = 5 * 3 = L.C.M. of 3 and 5 = 15 which does not belong to the given set

Thus, * is not a Binary Operation.

### Question 8: Let ∗ be the binary operation on N defined by a ∗ b = H.C.F. of a and b. Is ∗ commutative? Is ∗ associative? Does there exist identity for this binary operation on N?

Solution:

If a, b belongs to N

LHS = a * b = HCF of a and b

RHS = b * a = HCF of b and a

Since LHS = RHS

Therefore, * is Commutative

Now, If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = HCF of a, b and c

RHS = (a – b) * c = HCF of a, b and c

Since, LHS = RHS

Therefore, * is Associative

Now, 1 * a = a * 1 ≠ a

Thus, there doesn’t exist any identity element.

### Question 9: Let ∗ be a binary operation on the set Q of rational numbers as follows:

(i) a ∗ b = a – b

(ii) a ∗ b = a2 + b2

(iii) a ∗ b = a + ab

(iv) a ∗ b = (a – b)2

(v) a ∗ b = ab / 4

(vi) a ∗ b = ab2

### Find which of the binary operations are commutative and which are associative.

Solution:

(i) Commutative:

If a, b belongs to Z, a * b = b * a

LHS = a * b = a – b

RHS = b * a = b – a

Since, LHS is not equal to RHS

Therefore, * is not Commutative

Associative:

If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a – (b – c) = a – b + c

RHS = (a – b) * c = a – b – c

Since, LHS is not equal to RHS

Therefore, * is not Associative

(ii) Commutative:

If a, b belongs to Z, a * b = b * a

LHS = a * b = a2 + b2

RHS = b * a = b2 + a2

Since, LHS is equal to RHS

Therefore, * is Commutative

Associative:

If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * (b2 + c2) = a2 + (b2 + c2)2

RHS = (a * b) * c = (a2 + b2) * c = (a2 + b2)2 + c2

Since, LHS is not equal to RHS

Therefore, * is not Associative

(iii) Commutative:

If a, b belongs to Z, a * b = b * a

LHS = a * b = a + ab

RHS = b * a = b + ba

Since, LHS is not equal to RHS

Therefore, * is not Commutative

Associative:

If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * (b + bc) = a + a(b + bc)

RHS = (a * b) * c = (a + ab) * c = a + ab + (a + ab)c

Since, LHS is not equal to RHS

Therefore, * is not Associative

(iv) Commutative:

If a, b belongs to Z, a * b = b * a

LHS = a * b = (a – b)2

RHS = b * a = (b – a)2

Since, LHS is not equal to RHS

Therefore, * is not Commutative

Associative:

If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * (b – c)2 = [a – (b – c)2]2

RHS = (a * b) * c = (a – b)2 * c = [(a – b)2  – c]2

Since, LHS is not equal to RHS

Therefore, * is not Associative

(v) Commutative:

If a, b belongs to Z, a * b = b * a

LHS = a * b = ab / 4

RHS = b * a = ba / 4

Since, LHS is equal to RHS

Therefore, * is Commutative

Associative:

If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * bc/4 = abc/16

RHS = (a * b) * c = ab/4 * c = abc/16

Since, LHS is equal to RHS

Therefore, * is Associative

(vi) Commutative:

If a, b belongs to Z, a * b = b * a

LHS = a * b = ab2

RHS = b * a = ba2

Since, LHS is not equal to RHS

Therefore, * is not Commutative

Associative:

If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * (bc)2 = a(bc2)2

RHS = (a * b) * c = (ab2) * c = ab2c2

Since, LHS is not equal to RHS

Therefore, * is not Associative

### Question 10: Find which of the operations given above has identity

Solution:

An element e ∈ Q will be the identity element for the operation * if

a * e = a = e * a, for a ∈ Q

for (v) a * b = ab/4

Let e be an identity element

a * e = a = e * a

LHS : ae/4 = a

=> e = 4

RHS : ea/4 = a

=> e = 4

LHS = RHS

Thus, Identity element exists

Other operations doesn’t satisfy the required conditions.

Hence, other operations doesn’t have identity.

### Show that ∗ is commutative and associative. Find the identity element for ∗ on A, if any.

Solution:

Given (a, b) * (c, d) = (a+c, b+d) on A

Let (a, b), (c, d), (e,f) be 3 pairs ∈ A

Commutative :

LHS = (a, b) * (c, d) = (a+c, b+d)

RHS = (c, d) * (a, b) = (c+a, d+b) = (a+c, b+d)

Since, LHS is equal to RHS

Therefore, * is Commutative

Associative:

If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = (a, b) * [(c, d) * (e, f)] = (a, b) * (c+e, d+f) = (a+c+e, b+d+f)

RHS = [(a, b) * (c, d)] * (e, f) = (a+c, b+d) * (e, f) = (a+c+e, b+d+f)

Since, LHS is equal to RHS

Therefore, * is Associative

Existence of Identity element:

For a, e ∈ A, a * e = a

(a, b) * (e, e) = (a, b)

(a+e, b+e) = (a, b)

a + e = a

=> e = 0

b + e = b

=> e = 0

As 0 is not a part of set of natural numbers. So, identity function does not exist.

### Question 12: State whether the following statements are true or false. Justify.

(i) For an arbitrary binary operation ∗ on a set N, a ∗ a = a ∀ a ∈ N.

(ii) If ∗ is a commutative binary operation on N, then a ∗ (b ∗ c) = (c ∗ b) ∗ a

Solution:

(i) Let * be an operation on N, defined as:

a * b =  a + b ∀ a, b ∈ N

Let us consider b = a = 6, we have:

6 * 6 = 6 + 6 = 12 ≠ 6

Therefore, this statement is false.

(ii) Since, * is commutative

LHS = a ∗ (b ∗ c) = a * (c * b) = (c * b) * a = RHS

Therefore, this statement is true.

### Question 13: Consider a binary operation ∗ on N defined as a ∗ b = a3+ b3. Choose the correct answer.

(A) Is ∗ both associative and commutative?

(B) Is ∗ commutative but not associative?

(C) Is ∗ associative but not commutative?

(D) Is ∗ neither commutative nor associative?

Solution:

On N, * is defined as a * b = a3 + b3

Commutative:

If a, b belongs to Z, a * b = b * a

LHS = a * b = a3 + b3

RHS = b * a = b3 + a3

Since, LHS is equal to RHS

Therefore, * is Commutative

Associative:

If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * (b3 + c3) = a3 + (b3 + c3)3

RHS = (a * b) * c = (a3 + b3) * c = (a3 + b3)3 + c3

Since, LHS is not equal to RHS

Therefore, * is not Associative

Thus, Option (B) is correct.

Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

My Personal Notes arrow_drop_up