# Class 12 NCERT Solutions – Mathematics Part I – Chapter 1 Relations and Functions – Excercise 1.4 | Set 1

**Question 1: Determine whether or not each of the definition of ∗ given below gives a binary operation. In the event that ∗ is not a binary operation, give justification for this.**

**(i) On Z+, define ∗ by a ∗ b = a – b**

**Solution: **

If a, b belongs to Z+

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the

Demo Class for First Step to Coding Course,specificallydesigned for students of class 8 to 12.The students will get to learn more about the world of programming in these

free classeswhich will definitely help them in making a wise career choice in the future.a * b = a – b which may not belong to Z+

For eg: 1 – 3 = -2 which doesn’t belongs to Z+

Therefore, * is not a Binary Operation on Z+

**(ii) On Z+, define * by a * b = ab**

**Solution: **

If a, b belongs to Z+

a * b = ab which belongs to Z+

Therefore, * is Binary Operation on Z+

**(iii) On R, define * by a * b = ab²**

**Solution:**

If a, b belongs to R

a * b = ab

^{2 }which belongs to RTherefore, * is Binary Operation on R

**(iv) On Z+, define * by a * b = |a – b|**

**Solution:**

If a, b belongs to Z+

a * b = |a – b| which belongs to Z+

Therefore, * is Binary Operation on Z+

**(v) On Z+, define * by a * b = a**

**Solution:**

If a, b belongs to Z+

a * b = a which belongs to Z+

Therefore, * is Binary Operation on Z+

**Question 2: For each binary operation * defined below, determine whether * is binary, commutative or associative.**

**(i) On Z, define a * b = a – b **

**Solution:**

a) Binary:If a, b belongs to Z

a * b = a – b which belongs to Z

Therefore, * is Binary Operation on Z

b) Commutative:If a, b belongs to Z, a * b = b * a

LHS = a * b = a – b

RHS = b * a = b – a

Since, LHS is not equal to RHS

Therefore, * is not Commutative

c) Associative:If a, b, c belongs to Z, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a – b + c

RHS = (a – b) * c = a – b- c

Since, LHS is not equal to RHS

Therefore, * is not Associative

**(ii) On Q, define a * b = ab + 1**

**Solution:**

a) Binary:If a, b belongs to Q, a * b = ab + 1 which belongs to Q

Therefore, * is Binary Operation on Q

b) Commutative:If a, b belongs to Q, a * b = b * a

LHS = a * b = ab + 1

RHS = b * a = ba + 1 = ab + 1

Since, LHS is equal to RHS

Therefore, * is Commutative

c) Associative:If a, b, c belongs to Q, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * (bc + 1) = abc + a + 1

RHS = (a * b) * c = abc + c + 1

Since, LHS is not equal to RHS

Therefore, * is not Associative

**(iii) On Q, define a ∗ b = ab/2**

**Solution :**

a) Binary:If a, b belongs to Q, a * b = ab/2 which belongs to Q

Therefore, * is Binary Operation on Q

b) Commutative:If a, b belongs to Q, a * b = b * a

LHS = a * b = ab/2

RHS = b * a = ba/2

Since, LHS is equal to RHS

Therefore, * is Commutative

c) Associative:If a, b, c belongs to Q, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * (bc/2) = (abc)/2

RHS = (a * b) * c = (ab/2) * c = (abc)/2

Since, LHS is equal to RHS

Therefore, * is Associative

**(iv) On Z+, define a * b = 2**^{ab}

^{ab}

**Solution:**

a) Binary:If a, b belongs to Z+, a * b = 2

^{ab}which belongs to Z+Therefore, * is Binary Operation on Z+

b) Commutative:If a, b belongs to Z+, a * b = b * a

LHS = a * b = 2

^{ab}RHS = b * a = 2

^{ba}= 2^{ab}Since, LHS is equal to RHS

Therefore, * is Commutative

c) Associative:If a, b, c belongs to Z+, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * 2

^{bc = }2^{a * 2^(bc)}RHS = (a * b) * c = 2

^{ab}* c = 2^{2abc}Since, LHS is not equal to RHS

Therefore, * is not Associative

**(v) On Z+, define a * b = a**^{b}

^{b}

**Solution:**

a) Binary:If a, b belongs to Z+, a * b = a

^{b}which belongs to Z+Therefore, * is Binary Operation on Z+

b) Commutative:If a, b belongs to Z+, a * b = b * a

LHS = a * b = a

^{b}RHS = b * a = b

^{a}Since, LHS is not equal to RHS

Therefore, * is not Commutative

c) Associative:If a, b, c belongs to Z+, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * b

^{c}= a^{b^c}RHS = (a * b) * c = a

^{b}* c = a^{bc}Since, LHS is not equal to RHS

Therefore, * is not Associative

**(vi) On R – {– 1}, define a ∗ b = a / (b + 1)**

**Solution: **

a) Binary:If a, b belongs to R, a * b = a / (b+1) which belongs to R

Therefore, * is Binary Operation on R

b) Commutative:If a, b belongs to R, a * b = b * a

LHS = a * b = a / (b + 1)

RHS = b * a = b / (a + 1)

Since, LHS is not equal to RHS

Therefore, * is not Commutative

c) Associative:If a, b, c belongs to A, a * (b * c) = (a * b) * c

LHS = a * (b * c) = a * b / (c+1) = a(c+1) / b+c+1

RHS = (a * b) * c = (a / (b+1)) * c = a / (b+1)(c+1)

Since, LHS is not equal to RHS

Therefore, * is not Associative

**Question 3. Consider the binary operation ∧ on the set {1, 2, 3, 4, 5} defined by a ∧ b = min {a, b}. Write the operation table of the operation ∧. **

**Solution: **

^ 1 2 3 4 5 1 1 1 1 1 1 2 1 2 2 2 2 3 1 2 3 3 3 4 1 2 3 4 4 5 1 2 3 4 5

**Question 4: Consider a binary operation ∗ on the set {1, 2, 3, 4, 5} given by the following multiplication table.**

**(Hint: use the following table) **

* | 1 | 2 | 3 | 4 | 5 |

1 | 1 | 1 | 1 | 1 | 1 |

2 | 1 | 2 | 1 | 2 | 1 |

3 | 1 | 1 | 3 | 1 | 1 |

4 | 1 | 2 | 1 | 4 | 1 |

5 | 1 | 1 | 1 | 1 | 5 |

**(i) Compute (2 ∗ 3) ∗ 4 and 2 ∗ (3 ∗ 4)**

**Solution:**

Here, (2 * 3) * 4 = 1 * 4 = 1

2 * (3 * 4) = 2 * 1 = 1

**(ii) Is ∗ commutative?**

**Solution:**

The given composition table is symmetrical about the main diagonal of table. Thus, binary operation ‘*’ is commutative.

**(iii) Compute (2 ∗ 3) ∗ (4 ∗ 5).**

**Solution:**

(2 * 3) * (4 * 5) = 1 * 1 = 1

**Question 5: Let ∗′ be the binary operation on the set {1, 2, 3, 4, 5} defined by a ∗′ b = H.C.F. of a and b. Is the operation ∗′ same as the operation ∗ defined in Exercise 4 above? Justify your answer.**

**Solution:**

Let A = {1, 2, 3, 4, 5} and a ∗′ b = HCF of a and b.

*’ 1 2 3 4 5 1 1 1 1 1 1 2 1 2 1 2 1 3 1 1 3 1 1 4 1 2 1 4 1 5 1 1 1 1 5 We see that the operation *’ is the same as the operation * in Exercise 4 above.

**Question 6: Let ∗ be the binary operation on N given by a ∗ b = L.C.M. of a and b. Find**

**(i) 5 ∗ 7, 20 ∗ 16**

**Solution:**

If a, b belongs to N

a * b = LCM of a and b

5 * 7 = 35

20 * 16 = 80

**(ii) Is ∗ commutative?**

**Solution:**

If a, b belongs to N

LCM of a * b = ab

LCM of b * a = ba = ab

a*b = b*a

Thus, * binary operation is commutative.

**(iii) Is ∗ associative?**

**Solution:**

a * (b * c) = LCM of a, b, c

(a * b) * c = LCM of a, b, c

Since, a * (b * c) = (a * b) * c

Thus, * binary operation is associative.

**(iv) Find the identity of ∗ in N**

**Solution:**

Let ‘e’ is an identity

a * e = e * a, for a belonging to N

LCM of a * e = a, for a belonging to N

LCM of e * a = a, for a belonging to N

e divides a

e divides 1

Thus, e = 1

Hence, 1 is an identity element

**(v) Which elements of N are invertible for the operation ∗? **

**Solution:**

a * b = b * a = identity element

LCM of a and b = 1

a = b = 1

only ‘1’ is invertible element in N.