Given three integers a, b and c as triplets. Check if it is possible to make right angled triangle or not. Print Yes if possible, else No. 10^{-18} <= a, b, c <= 10^{18}
Input: 3 4 5 Output: Yes Explanation: Since 3*3 + 4*4 = 5*5 Hence print "Yes" Input: 8 5 13 Since 8 + 5 < 13 which violates the property of triangle. Hence print "No"
For a right angled triangle to be valid it must satisfies the following criteria:-
- a, b and c should be greater then 0.
- Sum of any two sides of triangle must be greater than the third side.
- Pythagorean Theorem i.e., a^{2} + b^{2} = c^{2}.
First two conditions can be easily checked but for third condition we have to take care of overflow. Since a, b and c can be large so we can’t compare them directly unless we use python or BigInteger library in Java. For languages like C and C++, we have to reduce the expression in fraction form.
Before comparing the fraction we need convert them in simplified form by dividing the numerator and denominator by gcd of both of them. Now compare both numerator and denominator of both the fractions of LHS and RHS such that if both would become same then it signifies the valid right angled triangle otherwise not.
// C++ program to check validity of triplets #include <bits/stdc++.h> using namespace std; // Function to check pythagorean triplets bool Triplets( long long a, long long b, long long c) { if (a <= 0 || b <= 0 || c <= 0) return false ; vector< long long > vec{ a, b, c }; sort(vec.begin(), vec.end()); // Re-initialize a, b, c in ascending order a = vec[0], b = vec[1], c = vec[2]; // Check validation of sides of triangle if (a + b <= c) return false ; long long p1 = a, p2 = c - b; // Reduce fraction to simplified form long long div = __gcd(p1, p2); p1 /= div , p2 /= div ; long long q1 = c + b, q2 = a; // Reduce fraction to simplified form div = __gcd(q1, q2); q1 /= div , q2 /= div ; // If fraction are equal return // 'true' else 'false' return (p1 == q1 && p2 == q2); } // Function that will return 'Yes' or 'No' // according to the correction of triplets string checkTriplet( long long a, long long b, long long c) { if (Triplets(a, b, c)) return "Yes" ; else return "No" ; } // Driver code int main() { long long a = 4, b = 3, c = 5; cout << checkTriplet(a, b, c) << endl; a = 8, b = 13, c = 5; cout << checkTriplet(a, b, c) << endl; a = 1200000000000, b = 1600000000000, c = 2000000000000; cout << checkTriplet(a, b, c) << endl; return 0; } |
Output: Yes No Yes
Time complexity: O(log(M)) where M is the Maximum value among a, b and c.
Auxiliary space: O(1)
This article is contributed by Shubham Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Recommended Posts:
- Check whether triangle is valid or not if sides are given
- Find all sides of a right angled triangle from given hypotenuse and area | Set 1
- Area of Circumcircle of a Right Angled Triangle
- Find the dimensions of Right angled triangle
- Area of Incircle of a Right Angled Triangle
- Number of possible pairs of Hypotenuse and Area to form right angled triangle
- Find other two sides of a right angle triangle
- Find other two sides and angles of a right angle triangle
- Find area of triangle if two vectors of two adjacent sides are given
- Probability of cutting a rope into three pieces such that the sides form a triangle
- Program to check if a date is valid or not
- Check if a large number is divisible by 2, 3 and 5 or not
- Check if a large number is divisibility by 15
- To check divisibility of any large number by 999
- Check if a large number is divisible by 13 or not
Improved By : Shubham Bansal 13