Find the dimensions of Right angled triangle

Given H (Hypotenuse) and A (area) of a right angled triangle, find the dimensions of right angled triangle such that the hypotenuse is of length H and its area is A. If no such triangle exists, print “Not Possible”.

Examples:

Input : H = 10, A = 24
Output : P = 6.00, B = 8.00

Input : H = 13, A = 36
Output : Not Possible

Approach:
Before moving to exact solution, let’s do some of mathematical calculations related to properties of Right angled triangle.
Suppose H = Hypotenuse, P = Perpendicular, B = Base and A = Area of right angled triangle.

We have some sort of equations as :

P^2 + B^2 = H^2
P * B = 2 * A
(P+B)^2 = P^2 + B^2 + 2*P*B = H^2 + 4*A
(P+B) = sqrt(H^2 + 4*A)  ----1
(P-B)^2 = P^2 + B^2 - 2*P*B = H^2 - 4*A
mod(P-B) = sqrt(H^2 - 4*A)  ----2
from equation (2) we can conclude that if 
H^2 < 4*A then no solution is possible.

Further from (1)+(2) and (1)-(2) we have :
P = (sqrt(H^2 + 4*A) + sqrt(H^2 - 4*A) ) / 2
B = (sqrt(H^2 + 4*A) - sqrt(H^2 - 4*A) ) / 2

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find dimensions of
// Right angled triangle
#include <bits/stdc++.h>
using namespace std;
  
// function to calculate dimension
void findDimen(int H, int A)
{
    // P^2+B^2 = H^2
    // P*B = 2*A
    // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
    // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
    // P+B = sqrt(H^2+4*A)
    // |P-B| = sqrt(H^2-4*A)
  
    if (H * H < 4 * A) {
        cout << "Not Possible\n";
        return;
    }
  
    // sqrt value of H^2 + 4A and H^2- 4A
    double apb = sqrt(H * H + 4 * A);
    double asb = sqrt(H * H - 4 * A);
  
    // Set precision
    cout.precision(2);
  
    cout << "P = " << fixed
         << (apb - asb) / 2.0 << "\n";
    cout << "B = " << (apb + asb) / 2.0;
}
  
// driver function
int main()
{
    int H = 5;
    int A = 6;
    findDimen(H, A);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find dimensions of
// Right angled triangle
class GFG {
  
    // function to calculate dimension
    static void findDimen(int H, int A)
    {
  
        // P^2+B^2 = H^2
        // P*B = 2*A
        // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
        // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
        // P+B = sqrt(H^2+4*A)
        // |P-B| = sqrt(H^2-4*A)
        if (H * H < 4 * A) {
            System.out.println("Not Possible");
            return;
        }
  
        // sqrt value of H^2 + 4A and H^2- 4A
        double apb = Math.sqrt(H * H + 4 * A);
        double asb = Math.sqrt(H * H - 4 * A);
  
        System.out.println("P = " + Math.round(((apb - asb) / 2.0) * 100.0) / 100.0);
        System.out.print("B = " + Math.round(((apb + asb) / 2.0) * 100.0) / 100.0);
    }
  
    // Driver function
    public static void main(String[] args)
    {
        int H = 5;
        int A = 6;
  
        findDimen(H, A);
    }
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python code to find dimensions
# of Right angled triangle
  
# importing the math package 
# to use sqrt function
from math import sqrt
  
# function to find the dimensions
def findDimen( H, A):
  
    # P ^ 2 + B ^ 2 = H ^ 2
    # P * B = 2 * A
    # (P + B)^2 = P ^ 2 + B ^ 2 + 2 * P*B = H ^ 2 + 4 * A
    # (P-B)^2 = P ^ 2 + B ^ 2-2 * P*B = H ^ 2-4 * A
    # P + B = sqrt(H ^ 2 + 4 * A)
    # |P-B| = sqrt(H ^ 2-4 * A)
    if H * H < 4 * A:
        print("Not Possible")
        return
  
    # sqrt value of H ^ 2 + 4A and H ^ 2- 4A
    apb = sqrt(H * H + 4 * A)
    asb = sqrt(H * H - 4 * A)
      
    # printing the dimensions
    print("P = ", "%.2f" %((apb - asb) / 2.0))
    print("B = ", "%.2f" %((apb + asb) / 2.0))
      
      
# driver code
H = 5 # assigning value to H
A = 6 # assigning value to A
findDimen(H, A) # calliing function
  
# This code is contributed by "Abhishek Sharma 44"

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find dimensions of
// Right angled triangle
using System;
  
class GFG {
  
    // function to calculate dimension
    static void findDimen(int H, int A)
    {
  
        // P^2+B^2 = H^2
        // P*B = 2*A
        // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
        // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
        // P+B = sqrt(H^2+4*A)
        // |P-B| = sqrt(H^2-4*A)
        if (H * H < 4 * A) {
            Console.WriteLine("Not Possible");
            return;
        }
  
        // sqrt value of H^2 + 4A and H^2- 4A
        double apb = Math.Sqrt(H * H + 4 * A);
        double asb = Math.Sqrt(H * H - 4 * A);
  
        Console.WriteLine("P = " + Math.Round(
          ((apb - asb) / 2.0) * 100.0) / 100.0);
            
        Console.WriteLine("B = " + Math.Round(
          ((apb + asb) / 2.0) * 100.0) / 100.0);
    }
  
    // Driver function
    public static void Main()
    {
        int H = 5;
        int A = 6;
  
        findDimen(H, A);
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find dimensions 
// of Right angled triangle
  
// function to calculate dimension
function findDimen($H, $A)
{
      
    // P^2+B^2 = H^2
    // P*B = 2*A
    // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
    // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
    // P+B = sqrt(H^2+4*A)
    // |P-B| = sqrt(H^2-4*A)
    if ($H * $H < 4 * $A)
    {
        echo "Not Possible\n";
        return;
    }
  
    // sqrt value of H^2 + 4A and
    // H^2- 4A
    $apb = sqrt($H * $H + 4 * $A);
    $asb = sqrt($H * $H - 4 * $A);
  
    echo "P = " , $fixed
        , ($apb - $asb) / 2.0 , "\n";
    echo "B = " , ($apb + $asb) / 2.0;
}
  
    // Driver Code
    $H = 5;
    $A = 6;
    findDimen($H, $A);
      
// This code is contributed by vt_m.
?>

chevron_right



Output:

P = 3.00
B = 4.00


My Personal Notes arrow_drop_up

Discovering ways to develop a plane for soaring career goals

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m