# Find the hypotenuse of a right angled triangle with given two sides

Given the other two sides of a right angled triangle, the task is to find it’s hypotenuse.
Examples:

Input: side1 = 3, side2 = 4
Output: 5.00
32 + 42 = 52
Input: side1 = 12, side2 = 15
Output: 19.21

Approach: Pythagoras theorem states that the square of hypotenuse of a right angled triangle is equal to the sum of squares of the other two sides.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ``#include ``#include ``#include ``using` `namespace` `std; `` ` `// Function to return the hypotenuse of the ``// right angled triangle ``double` `findHypotenuse(``double` `side1, ``double` `side2) ``{ ``    ``double` `h = ``sqrt``((side1 * side1) + (side2 * side2)); ``    ``return` `h; ``} `` ` `// Driver code ``int` `main() ``{ ``    ``int` `side1 = 3, side2 = 4; ``    ``cout << fixed << showpoint; ``    ``cout << setprecision(2); ``    ``cout << findHypotenuse(side1, side2); ``} ``     ` `// This code is contributed by ``// Surendra_Gangwar `

## Java

 `// Java implementation of the approach ``class` `GFG { `` ` `    ``// Function to return the hypotenuse of the ``    ``// right angled triangle ``    ``static` `double` `findHypotenuse(``double` `side1, ``double` `side2) ``    ``{ ``        ``double` `h = Math.sqrt((side1 * side1) + (side2 * side2)); ``        ``return` `h; ``    ``} `` ` `    ``// Driver code ``    ``public` `static` `void` `main(String s[]) ``    ``{ ``        ``int` `side1 = ``3``, side2 = ``4``; ``        ``System.out.printf(``"%.2f"``, findHypotenuse(side1, side2)); ``    ``} ``} `

## Python3

 `# Python implementation of the approach `` ` `# Function to return the hypotenuse of the ``# right angled triangle ``def` `findHypotenuse(side1, side2): `` ` `    ``h ``=` `(((side1 ``*` `side1) ``+` `(side2 ``*` `side2))``*``*``(``1``/``2``)); ``    ``return` `h; `` ` `# Driver code ``side1 ``=` `3``; ``side2 ``=` `4``; `` ` `print``(findHypotenuse(side1, side2)); `` ` `# This code contributed by Rajput-Ji `

## C#

 `// C# implementation of the approach ``using` `System; ``     ` `class` `GFG ``{ `` ` `    ``// Function to return the hypotenuse  ``    ``// of the right angled triangle ``    ``static` `double` `findHypotenuse(``double` `side1, ``                                 ``double` `side2) ``    ``{ ``        ``double` `h = Math.Sqrt((side1 * side1) +  ``                             ``(side2 * side2)); ``        ``return` `h; ``    ``} `` ` `    ``// Driver code ``    ``public` `static` `void` `Main() ``    ``{ ``        ``int` `side1 = 3, side2 = 4; ``        ``Console.Write(``"{0:F2}"``, findHypotenuse(side1,  ``                                               ``side2)); ``    ``} ``} `` ` `// This code is contributed  ``// by Princi Singh `

## Javascript

 ` `

Output:
`5.00`

Time Complexity: O(log(2*(s2)) where s is the side of the rectangle. because time complexity of inbuilt sqrt function is O(log(n))

Auxiliary Space: O(1)

Previous
Next