Open In App
Related Articles

Find the hypotenuse of a right angled triangle with given two sides

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given the other two sides of a right angled triangle, the task is to find it’s hypotenuse.
Examples: 
 

Input: side1 = 3, side2 = 4 
Output: 5.00 
32 + 42 = 52
Input: side1 = 12, side2 = 15 
Output: 19.21 
 


 


Approach: Pythagoras theorem states that the square of hypotenuse of a right angled triangle is equal to the sum of squares of the other two sides.
Below is the implementation of the above approach:
 

C++

// C++ implementation of the approach
#include<bits/stdc++.h>
#include <iostream>
#include <iomanip>
using namespace std;
  
// Function to return the hypotenuse of the
// right angled triangle
double findHypotenuse(double side1, double side2)
{
    double h = sqrt((side1 * side1) + (side2 * side2));
    return h;
}
  
// Driver code
int main()
{
    int side1 = 3, side2 = 4;
    cout << fixed << showpoint;
    cout << setprecision(2);
    cout << findHypotenuse(side1, side2);
}
      
// This code is contributed by
// Surendra_Gangwar

                    

Java

// Java implementation of the approach
class GFG {
  
    // Function to return the hypotenuse of the
    // right angled triangle
    static double findHypotenuse(double side1, double side2)
    {
        double h = Math.sqrt((side1 * side1) + (side2 * side2));
        return h;
    }
  
    // Driver code
    public static void main(String s[])
    {
        int side1 = 3, side2 = 4;
        System.out.printf("%.2f", findHypotenuse(side1, side2));
    }
}

                    

Python3

# Python implementation of the approach
  
# Function to return the hypotenuse of the
# right angled triangle
def findHypotenuse(side1, side2):
  
    h = (((side1 * side1) + (side2 * side2))**(1/2));
    return h;
  
# Driver code
side1 = 3;
side2 = 4;
  
print(findHypotenuse(side1, side2));
  
# This code contributed by Rajput-Ji

                    

C#

// C# implementation of the approach
using System;
      
class GFG
{
  
    // Function to return the hypotenuse 
    // of the right angled triangle
    static double findHypotenuse(double side1,
                                 double side2)
    {
        double h = Math.Sqrt((side1 * side1) + 
                             (side2 * side2));
        return h;
    }
  
    // Driver code
    public static void Main()
    {
        int side1 = 3, side2 = 4;
        Console.Write("{0:F2}", findHypotenuse(side1, 
                                               side2));
    }
}
  
// This code is contributed 
// by Princi Singh

                    

Javascript

<script>
// java script  implementation of the approach
  
// Function to return the hypotenuse of the
//right angled triangle
function findHypotenuse(side1, side2){
  
    let h = (((side1 * side1) + (side2 * side2))**(1/2));
    return h;
}
  
// Driver code
let side1 = 3;
let side2 = 4;
  
document.write(findHypotenuse(side1, side2).toFixed(2));
  
// This code is contributed by Gottumukkala Bobby
</script>

                    

Output: 
5.00

 

Time Complexity: O(log(2*(s2)) where s is the side of the rectangle. because time complexity of inbuilt sqrt function is O(log(n))

Auxiliary Space: O(1)



Last Updated : 13 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads