# Calculate volume and surface area of Torus

Torus

Property:

2. It is not a polyhedron
3. It has no vertices or edges
• Surface Area
The surface area of a Torus is given by the formula –

Surface Area = 4 × Pi^2 × R × r

Where r is the radius of the small circle and R is the radius of bigger circle and Pi is constant Pi=3.14159.

• Volume
The volume of a cone is given by the formula –

Volume = 2 × Pi^2 × R × r^2

Where r is the radius of the small circle and R is the radius of bigger circle and Pi is constant Pi=3.14159.

Examples:

Input : r=3, R=7
Output :
Volume: 1243.568195
Surface: 829.045464

## C++

 // C++ program to calculate volume // and surface area of Torus #include using namespace std;    int main() {     // radus of inner circle     double r = 3;        // distance from origin to center of inner circle     // radius of black circle in figure     double R = 7;        // Value of Pi     float pi = (float)3.14159;     double Volume = 0;     Volume = 2 * pi * pi * R * r * r;     cout<<"Volume: "<

## C

 // C program to calculate volume  // and surface area of Torus #include int main() {     // radus of inner circle     double r = 3;        // distance from origin to center of inner circle     // radius of black circle in figure     double R = 7;        // Value of Pi     float pi = (float)3.14159;     double Volume = 0;     Volume = 2 * pi * pi * R * r * r;     printf("Volume: %f", Volume);        double Surface = 4 * pi * pi * R * r;     printf("\nSurface: %f", Surface); }

## Java

 // Java program to calculate volume  // and surface area of Torus class Test {        public static void main(String args[])     {            // radius of inner circle         double r = 3;            // distance from origin to center of inner circle         // radius of black circle in figure         double R = 7;            // Value of Pi         float pi = (float)3.14159;         double Volume = 0;         Volume = 2 * pi * pi * R * r * r;         System.out.printf("Volume: %f", Volume);            double Surface = 4 * pi * pi * R * r;         System.out.printf("\nSurface: %f", Surface);     } }

## Python3

 # Python3 program to calculate volume # and surface area of Torus # radus of inner circle r = 3    # distance from origin to center of inner circle # radius of black circle in figure R = 7    # Value of Pi pi = 3.14159 Volume = (float)(2 * pi * pi * R * r * r); print("Volume: ", Volume); Surface = (float)(4 * pi * pi * R * r); print("Surface: ", Surface);

## C#

 // C# program to calculate volume  // and surface area of Torus  using System;    class GFG  {         // Driver Code public static void Main()  {         // radius of inner circle      double r = 3;         // distance from origin to center      // of inner circle radius of black     // circle in figure      double R = 7;         // Value of Pi      float pi = (float)3.14159;      double Volume = 0;      Volume = 2 * pi * pi * R * r * r;      Console.WriteLine("Volume: {0}", Volume);         double Surface = 4 * pi * pi * R * r;      Console.WriteLine("Surface: {0}", Surface);  }  }     // This code is contributed by Soumik

## PHP



Output:

Volume: 1243.568195
Surface: 829.045464

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.