Open In App
Related Articles

Sort an array without changing position of negative numbers

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr[] of N integers, the task is to sort the array without changing the position of negative numbers (if any) i.e. the negative numbers need not be sorted.

Examples: 

Input: arr[] = {2, -6, -3, 8, 4, 1} 
Output: 1 -6 -3 2 4 8
Input: arr[] = {-2, -6, -3, -8, 4, 1} 
Output: -2 -6 -3 -8 1 4 

Approach: Store all the non-negative elements of the array in another vector and sort this vector. Now, replace all the non-negative values in the original array with these sorted values.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to sort the array such that
// negative values do not get affected
void sortArray(int a[], int n)
{
 
    // Store all non-negative values
    vector<int> ans;
    for (int i = 0; i < n; i++) {
        if (a[i] >= 0)
            ans.push_back(a[i]);
    }
 
    // Sort non-negative values
    sort(ans.begin(), ans.end());
 
    int j = 0;
    for (int i = 0; i < n; i++) {
 
        // If current element is non-negative then
        // update it such that all the
        // non-negative values are sorted
        if (a[i] >= 0) {
            a[i] = ans[j];
            j++;
        }
    }
 
    // Print the sorted array
    for (int i = 0; i < n; i++)
        cout << a[i] << " ";
}
 
// Driver code
int main()
{
    int arr[] = { 2, -6, -3, 8, 4, 1 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    sortArray(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to sort the array such that
// negative values do not get affected
static void sortArray(int a[], int n)
{
 
    // Store all non-negative values
    Vector<Integer> ans = new Vector<>();
    for (int i = 0; i < n; i++)
    {
        if (a[i] >= 0)
            ans.add(a[i]);
    }
 
    // Sort non-negative values
    Collections.sort(ans);
 
    int j = 0;
    for (int i = 0; i < n; i++)
    {
 
        // If current element is non-negative then
        // update it such that all the
        // non-negative values are sorted
        if (a[i] >= 0)
        {
            a[i] = ans.get(j);
            j++;
        }
    }
 
    // Print the sorted array
    for (int i = 0; i < n; i++)
        System.out.print(a[i] + " ");
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, -6, -3, 8, 4, 1 };
 
    int n = arr.length;
 
    sortArray(arr, n);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
 
# Function to sort the array such that
# negative values do not get affected
def sortArray(a, n):
 
    # Store all non-negative values
    ans=[]
    for i in range(n):
        if (a[i] >= 0):
            ans.append(a[i])
 
    # Sort non-negative values
    ans = sorted(ans)
 
    j = 0
    for i in range(n):
 
        # If current element is non-negative then
        # update it such that all the
        # non-negative values are sorted
        if (a[i] >= 0):
            a[i] = ans[j]
            j += 1
 
    # Print the sorted array
    for i in range(n):
        print(a[i],end = " ")
 
 
# Driver code
 
arr = [2, -6, -3, 8, 4, 1]
 
n = len(arr)
 
sortArray(arr, n)
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of above approach
using System.Collections.Generic;
using System;
 
class GFG
{
 
// Function to sort the array such that
// negative values do not get affected
static void sortArray(int []a, int n)
{
 
    // Store all non-negative values
    List<int> ans = new List<int>();
    for (int i = 0; i < n; i++)
    {
        if (a[i] >= 0)
            ans.Add(a[i]);
    }
 
    // Sort non-negative values
    ans.Sort();
 
    int j = 0;
    for (int i = 0; i < n; i++)
    {
 
        // If current element is non-negative then
        // update it such that all the
        // non-negative values are sorted
        if (a[i] >= 0)
        {
            a[i] = ans[j];
            j++;
        }
    }
 
    // Print the sorted array
    for (int i = 0; i < n; i++)
        Console.Write(a[i] + " ");
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 2, -6, -3, 8, 4, 1 };
 
    int n = arr.Length;
 
    sortArray(arr, n);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to sort the array such that
// negative values do not get affected
function sortArray(a, n)
{
 
    // Store all non-negative values
    var ans = [];
    for (var i = 0; i < n; i++) {
        if (a[i] >= 0)
            ans.push(a[i]);
    }
 
    // Sort non-negative values
    ans.sort((a,b)=> a-b);
 
    var j = 0;
    for (var i = 0; i < n; i++) {
 
        // If current element is non-negative then
        // update it such that all the
        // non-negative values are sorted
        if (a[i] >= 0) {
            a[i] = ans[j];
            j++;
        }
    }
 
    // Print the sorted array
    for (var i = 0; i < n; i++)
        document.write( a[i] + " ");
}
 
// Driver code
var arr = [2, -6, -3, 8, 4, 1];
var n = arr.length;
sortArray(arr, n);
 
 
</script>


Output: 

1 -6 -3 2 4 8

 

Time Complexity: O(n * log n) // sorting an array takes n logn time and traversing the array takes linear time, hence the overall complexity turns out to be O(n * log n)

Auxiliary Space: O(n) // since an extra array is used so the solution takes space equal to the length of the array


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 08 Aug, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials