NumPy stands for Numerical Python. It is a Python library used for working with an array. In Python, we use the list for purpose of the array but it’s slow to process. NumPy array is a powerful N-dimensional array object and its use in linear algebra, Fourier transform, and random number capabilities. It provides an array object much faster than traditional Python lists.
Types of Array:
- One Dimensional Array
- Multi-Dimensional Array
One Dimensional Array:
A one-dimensional array is a type of linear array.

One Dimensional Array
Example:
Python3
# importing numpy module import numpy as np # creating list list = [ 1 , 2 , 3 , 4 ] # creating numpy array sample_array = np.array(list1) print ( "List in python : " , list ) print ( "Numpy Array in python :" , sample_array) |
Output:
List in python : [1, 2, 3, 4] Numpy Array in python : [1 2 3 4]
Check data type for list and array:
Python3
print ( type (list_1)) print ( type (sample_array)) |
Output:
<class 'list'> <class 'numpy.ndarray'>
Multi-Dimensional Array:
Data in multidimensional arrays are stored in tabular form.

Two Dimensional Array
Example:
Python3
# importing numpy module import numpy as np # creating list list_1 = [ 1 , 2 , 3 , 4 ] list_2 = [ 5 , 6 , 7 , 8 ] list_3 = [ 9 , 10 , 11 , 12 ] # creating numpy array sample_array = np.array([list_1, list_2, list_3]) print ( "Numpy multi dimensional array in python\n" , sample_array) |
Output:
Numpy multi dimensional array in python [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]]
Note: use [ ] operators inside numpy.array() for multi-dimensional
Anatomy of an array :
1. Axis: The Axis of an array describes the order of the indexing into the array.
Axis 0 = one dimensional
Axis 1 = Two dimensional
Axis 2 = Three dimensional
2. Shape: The number of elements along with each axis. It is from a tuple.
Example:
Python3
# importing numpy module import numpy as np # creating list list_1 = [ 1 , 2 , 3 , 4 ] list_2 = [ 5 , 6 , 7 , 8 ] list_3 = [ 9 , 10 , 11 , 12 ] # creating numpy array sample_array = np.array([list_1, list_2, list_3]) print ( "Numpy array :" ) print (sample_array) # print shape of the array print ( "Shape of the array :" , sample_array.shape) |
Output:
Numpy array : [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] Shape of the array : (3, 4)
Example:
Python3
import numpy as np sample_array = np.array([[ 0 , 4 , 2 ], [ 3 , 4 , 5 ], [ 23 , 4 , 5 ], [ 2 , 34 , 5 ], [ 5 , 6 , 7 ]]) print ( "shape of the array :" , sample_array.shape) |
Output:
shape of the array : (5, 3)
3. Rank: The rank of an array is simply the number of axes (or dimensions) it has.
The one-dimensional array has rank 1.

Rank 1
The two-dimensional array has rank 2.

Rank 2
4. Data type objects (dtype): Data type objects (dtype) is an instance of numpy.dtype class. It describes how the bytes in the fixed-size block of memory corresponding to an array item should be interpreted.
Example:
Python3
# Import module import numpy as np # Creating the array sample_array_1 = np.array([[ 0 , 4 , 2 ]]) sample_array_2 = np.array([ 0.2 , 0.4 , 2.4 ]) # display data type print ( "Data type of the array 1 :" , sample_array_1.dtype) print ( "Data type of array 2 :" , sample_array_2.dtype) |
Output:
Data type of the array 1 : int32 Data type of array 2 : float64
Some different way of creating Numpy Array :
1. numpy.array(): The Numpy array object in Numpy is called ndarray. We can create ndarray using numpy.array() function.
Syntax: numpy.array(parameter)
Example:
Python3
# import module import numpy as np #creating a array arr = np.array([ 3 , 4 , 5 , 5 ]) print ( "Array :" ,arr) |
Output:
Array : [3 4 5 5]
2. numpy.fromiter(): The fromiter() function create a new one-dimensional array from an iterable object.
Syntax: numpy.fromiter(iterable, dtype, count=-1)
Example 1:
Python3
#Import numpy module import numpy as np # iterable iterable = (a * a for a in range ( 8 )) arr = np.fromiter(iterable, float ) print ( "fromiter() array :" ,arr) |
Output:
fromiter() array : [ 0. 1. 4. 9. 16. 25. 36. 49.]
Example 2:
Python3
import numpy as np var = "Geekforgeeks" arr = np.fromiter(var, dtype = 'U2' ) print ( "fromiter() array :" , arr) |
Output:
fromiter() array : [‘G’ ‘e’ ‘e’ ‘k’ ‘f’ ‘o’ ‘r’ ‘g’ ‘e’ ‘e’ ‘k’ ‘s’]
3. numpy.arange(): This is an inbuilt NumPy function that returns evenly spaced values within a given interval.
Syntax: numpy.arange([start, ]stop, [step, ]dtype=None)
Example:
Python3
import numpy as np np.arange( 1 , 20 , 2 , dtype = np.float32) |
Output:
array([ 1., 3., 5., 7., 9., 11., 13., 15., 17., 19.], dtype=float32)
4. numpy.linspace(): This function returns evenly spaced numbers over a specified between two limits.
Syntax: numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
Example 1:
Python3
import numpy as np np.linspace( 3.5 , 10 , 3 ) |
Output:
array([ 3.5 , 6.75, 10. ])
Example 2:
Python3
import numpy as np np.linspace( 3.5 , 10 , 3 , dtype = np.int32) |
Output:
array([ 3, 6, 10])
5. numpy.empty(): This function create a new array of given shape and type, without initializing value.
Syntax: numpy.empty(shape, dtype=float, order=’C’)
Example:
Python3
import numpy as np np.empty([ 4 , 3 ], dtype = np.int32, order = 'f' ) |
Output:
array([[ 1, 5, 9], [ 2, 6, 10], [ 3, 7, 11], [ 4, 8, 12]])
6. numpy.ones(): This function is used to get a new array of given shape and type, filled with ones(1).
Syntax: numpy.ones(shape, dtype=None, order=’C’)
Example:
Python3
import numpy as np np.ones([ 4 , 3 ], dtype = np.int32, order = 'f' ) |
Output:
array([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]])
7. numpy.zeros(): This function is used to get a new array of given shape and type, filled with zeros(0).
Syntax: numpy.ones(shape, dtype=None)
Example:
Python3
import numpy as np np.zeros([ 4 , 3 ], dtype = np.int32, order = 'f' ) |
Output:
array([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]])
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.