numpy.random.random_sample()
is one of the function for doing random sampling in numpy. It returns an array of specified shape and fills it with random floats in the half-open interval [0.0, 1.0).
Syntax : numpy.random.random_sample(size=None)
Parameters :
size : [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.Return : Array of random floats in the interval
[0.0, 1.0).
or a single such random float if size not provided.
Code #1 :
# Python program explaining # numpy.random.sample() function # importing numpy import numpy as geek # output random value out_val = geek.random.random_sample() print ( "Output random float value : " , out_val) |
Output random float value : 0.9211987310893188
Code #2 :
# Python program explaining # numpy.random.random_sample() function # importing numpy import numpy as geek # output array out_arr = geek.random.random_sample(size = ( 1 , 3 )) print ( "Output 2D Array filled with random floats : " , out_arr) |
Output 2D Array filled with random floats : [[ 0.64325146 0.4699456 0.89895437]]
Code #3 :
# Python program explaining # numpy.random.random_sample() function # importing numpy import numpy as geek # output array out_arr = geek.random.random_sample(( 3 , 2 , 1 )) print ( "Output 3D Array filled with random floats : " , out_arr) |
Output 3D Array filled with random floats : [[[ 0.78245025] [ 0.77736746]] [[ 0.54389267] [ 0.18491758]] [[ 0.97428409] [ 0.73729256]]]
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.