Open In App
Related Articles

Random sampling in numpy | ranf() function

Improve Article
Improve
Save Article
Save
Like Article
Like

numpy.random.ranf() is one of the function for doing random sampling in numpy. It returns an array of specified shape and fills it with random floats in the half-open interval [0.0, 1.0).

Syntax : numpy.random.ranf(size=None)

Parameters :
size : [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

Return : Array of random floats in the interval [0.0, 1.0). or a single such random float if size not provided.

Code #1 :




# Python program explaining
# numpy.random.ranf() function
  
# importing numpy
import numpy as geek
  
  
# output random float value
out_val = geek.random.ranf()
print ("Output random float value : ", out_val) 


Output :

Output random float value :  0.0877051588430926

 

Code #2 :




# Python program explaining
# numpy.random.ranf() function
  
# importing numpy
import numpy as geek
  
  
# output array
out_arr = geek.random.ranf(size =(2, 1))
print ("Output 2D Array filled with random floats : ", out_arr) 


Output :

Output 2D Array filled with random floats :  [[ 0.14186407]
 [ 0.58068259]]

 
Code #3 :




# Python program explaining
# numpy.random.ranf() function
  
# importing numpy
import numpy as geek
  
# output array
out_arr = geek.random.ranf((3, 3, 2))
print ("Output 3D Array filled with random floats : ", out_arr) 


Output :

Output 3D Array filled with random floats :  [[[ 0.11013584  0.67844746]
  [ 0.84691569  0.09467084]
  [ 0.69918864  0.12137178]]

 [[ 0.30629051  0.28301093]
  [ 0.1302665   0.2196221 ]
  [ 0.51555358  0.73191852]]

 [[ 0.72806359  0.66485275]
  [ 0.80654791  0.04947181]
  [ 0.06380535  0.99306064]]]


Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 26 Feb, 2019
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials