# Basic Laws for Various Arithmetic Operations

Prerequisite – Number System

A number is a way to represent arithmetic value, count or measure of a particular quantity. A number system can be considered as a mathematical notation of numbers using a set of digits or symbols. In simpler words the number system is a method of representing numbers. Every number system is identified with the help of its base or radix.

Arithmetic operations like addition, subtraction, multiplication and division are performed in various radix bases. These arithmetic operations may also use r’s complement and (r-1)’s complement representation.

**Basic Laws for Various Arithmetic Operations :**

These representation techniques hold basic laws for various arithmetic operations:

**Unique Existence law :**

The sum and product of any two numbers exist uniquely. We should also note that 0 is the identity element for addition and 1 is the identity element for multiplication.

**Associative law :**

Addition and multiplication of binary numbers are associative.**Commutative law :**

Addition and multiplication of binary numbers are commutative.**Distributive law :**

Multiplication of binary numbers is distributive over two or more terms in addition.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: **DSA Self Paced**. Become industry ready at a student-friendly price.

## Recommended Posts:

- Arithmetic Operations of Octal Numbers
- Arithmetic Operations of Hexadecimal Numbers
- Arithmetic Operations of Binary Numbers
- Proof of De-Morgan's laws in boolean algebra
- Basic Blocks in Compiler Design
- Introduction to basic Networking terminology
- One bit memory cell (or Basic Bistable element)
- Basic Algorithm Techniques Not Taught in Academics
- Overflow in Arithmetic Addition in Binary Number System
- Difference between Basic Disk and Dynamic Disk
- DataFrame Operations in R
- Operations on Processes
- Different Operations on Matrices
- Algebraic Operations on a Matrix in R
- Array Operations in R Programming
- Functionally Complete Operations
- Mathematics | Set Operations (Set theory)
- Dual Mode operations in OS
- Read and Write operations in Memory
- Bitwise Operations on Digits of a Number

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.