Unbounded Knapsack (Repetition of items allowed)

Given a knapsack weight W and a set of n items with certain value vali and weight wti, we need to calculate minimum amount that could make up this quantity exactly. This is different from classical Knapsack problem, here we are allowed to use unlimited number of instances of an item.

Examples:

Input : W = 100
       val[]  = {1, 30}
       wt[] = {1, 50}
Output : 100
There are many ways to fill knapsack.
1) 2 instances of 50 unit weight item.
2) 100 instances of 1 unit weight item.
3) 1 instance of 50 unit weight item and 50
   instances of 1 unit weight items.
We get maximum value with option 2.

Input : W = 8
       val[] = {10, 40, 50, 70}
       wt[]  = {1, 3, 4, 5}       
Output : 110 
We get maximum value with one unit of
weight 5 and one unit of weight 3.

Its an unbounded knapsack problem as we can use 1 or more instances of any resource. A simple 1D array, say dp[W+1] can be used such that dp[i] stores the maximum value which can achieved using all items and i capacity of knapsack. Note that we use 1D array here which is different from classical knapsack where we used 2D array. Here number of items never changes. We always have all items available.

We can recursively compute dp[] using below formula



dp[i] = 0
dp[i] = max(dp[i], dp[i-wt[j]] + val[j] 
                   where j varies from 0 
                   to n-1 such that:
                   wt[j] <= i

result = d[W]

Below is the implementation of above idea.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find maximum achievable value
// with a knapsack of weight W and multiple
// instances allowed.
#include<bits/stdc++.h>
using namespace std;
  
// Returns the maximum value with knapsack of
// W capacity
int unboundedKnapsack(int W, int n, int val[], int wt[])
{
    // dp[i] is going to store maximum value
    // with knapsack capacity i.
    int dp[W+1];
    memset(dp, 0, sizeof dp);
  
    int ans = 0;
  
    // Fill dp[] using above recursive formula
    for (int i=0; i<=W; i++)
      for (int j=0; j<n; j++)
         if (wt[j] <= i)
            dp[i] = max(dp[i], dp[i-wt[j]]+val[j]);
  
    return dp[W];
}
  
// Driver program
int main()
{
    int W = 100;
    int val[] = {10, 30, 20};
    int wt[] = {5, 10, 15};
    int n = sizeof(val)/sizeof(val[0]);
  
    cout << unboundedKnapsack(W, n, val, wt);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find maximum achievable
// value with a knapsack of weight W and
// multiple instances allowed.
public class UboundedKnapsack {
      
    private static int max(int i, int j) {
            return (i > j) ? i : j;
    }
      
    // Returns the maximum value with knapsack
    // of W capacity
    private static int unboundedKnapsack(int W, int n, 
                                int[] val, int[] wt) {
          
        // dp[i] is going to store maximum value
        // with knapsack capacity i.
        int dp[] = new int[W + 1];
          
        // Fill dp[] using above recursive formula
        for(int i = 0; i <= W; i++){
            for(int j = 0; j < n; j++){
                if(wt[j] <= i){
                    dp[i] = max(dp[i], dp[i - wt[j]] + 
                                val[j]);
                }
            }
        }
        return dp[W];
    }
  
    // Driver program
    public static void main(String[] args) {
        int W = 100;
        int val[] = {10, 30, 20};
        int wt[] = {5, 10, 15};
        int n = val.length;
        System.out.println(unboundedKnapsack(W, n, val, wt));
    }
}
// This code is contributed by Aditya Kumar 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

   
# Python3 program to find maximum
# achievable value with a knapsack
# of weight W and multiple instances allowed.
  
# Returns the maximum value 
# with knapsack of W capacity
def unboundedKnapsack(W, n, val, wt):
  
    # dp[i] is going to store maximum 
    # value with knapsack capacity i.
    dp = [0 for i in range(W + 1)]
  
    ans = 0
  
    # Fill dp[] using above recursive formula
    for i in range(W + 1):
        for j in range(n):
            if (wt[j] <= i):
                dp[i] = max(dp[i], dp[i - wt[j]] + val[j])
  
    return dp[W]
  
# Driver program
W = 100
val = [10, 30, 20]
wt = [5, 10, 15]
n = len(val)
  
print(unboundedKnapsack(W, n, val, wt))
  
# This code is contributed by Anant Agarwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find maximum achievable
// value with a knapsack of weight W and
// multiple instances allowed.
using System;
  
class UboundedKnapsack {
      
    private static int max(int i, int j)
    {
            return (i > j) ? i : j;
    }
      
    // Returns the maximum value 
    // with knapsack of W capacity
    private static int unboundedKnapsack(int W, int n, 
                                  int []val, int []wt) 
    {
          
        // dp[i] is going to store maximum value
        // with knapsack capacity i.
        int []dp = new int[W + 1];
          
        // Fill dp[] using above recursive formula
        for(int i = 0; i <= W; i++){
            for(int j = 0; j < n; j++){
                if(wt[j] <= i){
                    dp[i] = Math.Max(dp[i], dp[i - wt[j]] + val[j]);
                }
            }
        }
        return dp[W];
    }
  
    // Driver program
    public static void Main() 
    {
        int W = 100;
        int []val = {10, 30, 20};
        int []wt = {5, 10, 15};
        int n = val.Length;
        Console.WriteLine(unboundedKnapsack(W, n, val, wt));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find maximum 
// achievable value with a 
// knapsack of weight W and 
// multiple instances allowed.
  
// Returns the maximum value 
// with knapsack of W capacity
function unboundedKnapsack($W, $n
                           $val, $wt)
{
    // dp[i] is going to store 
    // maximum value with 
    // knapsack capacity i.
    for($i = 0; $i <= $W; $i++)
        $dp[$i] = 0;
  
    $ans = 0;
      
    // Fill dp[] using above
    // recursive formula
    for ($i = 0; $i <= $W; $i++)
    for ($j = 0; $j < $n; $j++)
        if ($wt[$j] <= $i)
            $dp[$i] = max($dp[$i], 
                          $dp[$i - $wt[$j]] + 
                                   $val[$j]);
  
    return $dp[$W];
}
  
// Driver Code
$W = 100;
$val = array(10, 30, 20);
$wt = array(5, 10, 15);
$n = count($val); //sizeof($val)/sizeof($val[0]);
  
echo unboundedKnapsack($W, $n
                       $val, $wt);
  
// This code is contributed
// by shiv_bhakt
?>

chevron_right



Output:

300

This article is compiled using inputs from Shubham Gupta, Shubham Joshi and Ashish kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : vt_m, shiv_bhakt, dStudent