Skip to content
Related Articles

Related Articles

Coin Change | DP-7

Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 27 Oct, 2022
Improve Article
Save Article

Given an integer array of coins[ ] of sizerepresenting different types of currency and an integer sum, The task is to find the number of ways to make sum by using different combinations from coins[].  

Note: Assume that you have an infinite supply of each type of coin. 

Examples: 

Input: sum = 4, coins[] = {1,2,3}, 
Output: 4
Explanation: there are four solutions: {1, 1, 1, 1}, {1, 1, 2}, {2, 2}, {1, 3}. 

Input: sum = 10, coins[] = {2, 5, 3, 6}
Output: 5
Explanation: There are five solutions: 
{2,2,2,2,2}, {2,2,3,3}, {2,2,6}, {2,3,5} and {5,5}.

Recommended Practice

Coin Change Problem using Recursion:

Solve the Coin Change is to traverse the array by applying the recursive solution and keep finding the possible ways to find the occurrence.

Illustration: 

It should be noted that the above function computes the same subproblems again and again. See the following recursion tree for coins[] = {1, 2, 3} and n = 5. 

The function C({1}, 3) is called two times. If we draw the complete tree, then we can see that there are many subproblems being called more than once.  

C() –> count()

                              C({1,2,3}, 5)                     

                           /                     \    
                         /                         \                  

             C({1,2,3}, 2)                   C({1,2}, 5)

                 /       \                          /    \         
             /              \                   /            \   

C({1,2,3}, -1)  C({1,2}, 2)        C({1,2}, 3)    C({1}, 5)
                       /    \                  /     \           /     \
                     /       \                /       \         /        \

    C({1,2},0)  C({1},2)   C({1,2},1) C({1},3)    C({1}, 4)  C({}, 5)

                        / \           / \          /\           /     \         
                     /      \      /     \       /   \        /        \  

                .      .  .     .   .     .              C({1}, 3)      C({}, 4)

                                                           / \  
                                                          /   \                                                 .      

Follow the below steps to Implement the idea:

  • We have 2 choices for a coin of a particular denomination, either i) to include, or ii) to exclude.
  • If we are at coins[n-1], we can take as many instances of that coin ( unbounded inclusion ) i.e count(coins, n, sum – coins[n-1] ); then we move to coins[n-2]. 
  • After moving to coins[n-2], we can’t move back and can’t make choices for coins[n-1] i.e count(coins, n-1, sum).     
  • Finally, as we have to find the total number of ways, so we will add these 2 possible choices, i.e count(coins, n, sum – coins[n-1] ) + count(coins, n-1, sum );

Below is the Implementation of the above approach.

C++




// Recursive C++ program for
// coin change problem.
#include <bits/stdc++.h>
using namespace std;
 
// Returns the count of ways we can
// sum coins[0...n-1] coins to get sum "sum"
int count(int coins[], int n, int sum)
{
 
    // If sum is 0 then there is 1 solution
    // (do not include any coin)
    if (sum == 0)
        return 1;
 
    // If sum is less than 0 then no
    // solution exists
    if (sum < 0)
        return 0;
 
    // If there are no coins and sum
    // is greater than 0, then no
    // solution exist
    if (n <= 0)
        return 0;
 
    // count is sum of solutions (i)
    // including coins[n-1] (ii) excluding coins[n-1]
    return count(coins, n - 1, sum)
           + count(coins, n, sum - coins[n - 1]);
}
 
// Driver code
int main()
{
    int i, j;
    int coins[] = { 1, 2, 3 };
    int n = sizeof(coins) / sizeof(coins[0]);
    int sum = 4;
 
    cout << " " << count(coins, n, sum);
 
    return 0;
}
 
// This code is contributed by shivanisinghss2110

C




// Recursive C program for
// coin change problem.
#include <stdio.h>
 
// Returns the count of ways we can
// sum coins[0...n-1] coins to get sum "sum"
int count(int coins[], int n, int sum)
{
    // If sum is 0 then there is 1 solution
    // (do not include any coin)
    if (sum == 0)
        return 1;
 
    // If sum is less than 0 then no
    // solution exists
    if (sum < 0)
        return 0;
 
    // If there are no coins and sum
    // is greater than 0, then no
    // solution exist
    if (n <= 0)
        return 0;
 
    // count is sum of solutions (i)
    // including coins[n-1] (ii) excluding coins[n-1]
    return count(coins, n - 1, sum)
           + count(coins, n, sum - coins[n - 1]);
}
 
// Driver program to test above function
int main()
{
    int i, j;
    int coins[] = { 1, 2, 3 };
    int n = sizeof(coins) / sizeof(coins[0]);
    printf("%d ", count(coins, n, 4));
    getchar();
    return 0;
}

Java




// Recursive JAVA program for
// coin change problem.
import java.util.*;
class GFG {
 
    // Returns the count of ways we can
    // sum coins[0...n-1] coins to get sum "sum"
    static int count(int coins[], int n, int sum)
    {
 
        // If sum is 0 then there is 1 solution
        // (do not include any coin)
        if (sum == 0)
            return 1;
 
        // If sum is less than 0 then no
        // solution exists
        if (sum < 0)
            return 0;
 
        // If there are no coins and sum
        // is greater than 0, then no
        // solution exist
        if (n <= 0)
            return 0;
 
        // count is sum of solutions (i)
        // including coins[n-1] (ii) excluding coins[n-1]
        return count(coins, n - 1, sum)
            + count(coins, n, sum - coins[n - 1]);
    }
 
    // Driver code
    public static void main(String args[])
    {
        int coins[] = { 1, 2, 3 };
        int n = coins.length;
 
        System.out.println(count(coins, n, 4));
    }
}
 
// This code is contributed by jyoti369

Python3




# Recursive Python3 program for
# coin change problem.
 
# Returns the count of ways we can sum
# coins[0...n-1] coins to get sum "sum"
 
 
def count(coins, n, sum):
 
    # If sum is 0 then there is 1
    # solution (do not include any coin)
    if (sum == 0):
        return 1
 
    # If sum is less than 0 then no
    # solution exists
    if (sum < 0):
        return 0
 
    # If there are no coins and sum
    # is greater than 0, then no
    # solution exist
    if (n <= 0):
        return 0
 
    # count is sum of solutions (i)
    # including coins[n-1] (ii) excluding coins[n-1]
    return count(coins, n - 1, sum) + count(coins, n, sum-coins[n-1])
 
 
# Driver program to test above function
coins = [1, 2, 3]
n = len(coins)
print(count(coins, n, 4))
 
# This code is contributed by Smitha Dinesh Semwal

C#




// Recursive C# program for
// coin change problem.
using System;
 
class GFG {
    // Returns the count of ways we can
    // sum coins[0...n-1] coins to get sum "sum"
    static int count(int[] coins, int n, int sum)
    {
        // If sum is 0 then there is 1 solution
        // (do not include any coin)
        if (sum == 0)
            return 1;
 
        // If sum is less than 0 then no
        // solution exists
        if (sum < 0)
            return 0;
 
        // If there are no coins and sum
        // is greater than 0, then no
        // solution exist
        if (n <= 0)
            return 0;
 
        // count is sum of solutions (i)
        // including coins[n-1] (ii) excluding coins[n-1]
        return count(coins, n - 1, sum)
            + count(coins, n, sum - coins[n - 1]);
    }
 
    // Driver program
    public static void Main()
    {
 
        int[] coins = { 1, 2, 3 };
        int n = coins.Length;
        Console.Write(count(coins, n, 4));
    }
}
// This code is contributed by Sam007

PHP




<?php
// Recursive PHP program for
// coin change problem.
 
// Returns the count of ways we can
// sum coins[0...n-1] coins to get sum "sum"
function coun($coins, $n, $sum)
{
     
    // If sum is 0 then there is
    // 1 solution (do not include
    // any coin)
    if ($sum == 0)
        return 1;
     
    // If sum is less than 0 then no
    // solution exists
    if ($sum < 0)
        return 0;
 
    // If there are no coins and sum
    // is greater than 0, then no
    // solution exist
    if ($n <= 0)
        return 0;
 
    // count is sum of solutions (i)
    // including coins[n-1] (ii) excluding coins[n-1]
    return coun($coins, $n - 1,$sum ) +
           coun($coins, $n, $sum - $coins[$n - 1] );
}
 
    // Driver Code
    $coins = array(1, 2, 3);
    $n = count($coins);
    echo coun($coins, $n, 4);
     
// This code is contributed by Sam007
?>

Javascript




<script>
// Recursive javascript program for
// coin change problem.
    
// Returns the count of ways we can
// sum coins[0...n-1] coins to get sum "sum"
function count(coins , n , sum )
{
 
    // If sum is 0 then there is 1 solution
    // (do not include any coin)
    if (sum == 0)
        return 1;
     
    // If sum is less than 0 then no
    // solution exists
    if (sum < 0)
        return 0;
 
    // If there are no coins and sum
    // is greater than 0, then no
    // solution exist
    if (n <=0)
        return 0;
 
    // count is sum of solutions (i)
    // including coins[n-1] (ii) excluding coins[n-1]
    return count( coins, n - 1, sum ) +
           count( coins, n, sum - coins[n - 1] );
}
 
// Driver program to test above function
var coins = [1, 2, 3];
var n = coins.length;
document.write( count(coins, n, 4));
 
// This code is contributed by Amit Katiyar
</script>

Output

 4

Time Complexity: O(2sum)
Auxiliary Space: O(target)

Since the same sub-problems are called again, this problem has the Overlapping Subproblems property. So the Coin Change problem has both properties (see this and this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems, recomputations of the same subproblems can be avoided by constructing a temporary array table[][] in a bottom-up manner.

Coin Change By Using Dynamic Programming:

The Idea to Solve this Problem is by using the Bottom Up Memoization. Here is the Bottom up approach to solve this Problem.

Follow the below steps to Implement the idea:

  • Using 2-D vector to store the Overlapping subproblems.
  • Traversing the whole array to find the solution and storing in the memoization table.
  • Using the memoization table to find the optimal solution.

Below is the implementation of the above Idea.

C++




// C++ program for coin change problem
 
#include <bits/stdc++.h>
 
using namespace std;
 
int count(int coins[], int n, int sum)
{
    int i, j, x, y;
 
    // We need sum+1 rows as the table
    // is constructed in bottom up
    // manner using the base case 0
    // value case (sum = 0)
    int table[sum + 1][n];
 
    // Fill the entries for 0
    // value case (sum = 0)
    for (i = 0; i < n; i++)
        table[0][i] = 1;
 
    // Fill rest of the table entries
    // in bottom up manner
    for (i = 1; i < sum + 1; i++) {
        for (j = 0; j < n; j++) {
            // Count of solutions including coins[j]
            x = (i - coins[j] >= 0) ? table[i - coins[j]][j]
                                    : 0;
 
            // Count of solutions excluding coins[j]
            y = (j >= 1) ? table[i][j - 1] : 0;
 
            // total count
            table[i][j] = x + y;
        }
    }
    return table[sum][n - 1];
}
 
// Driver Code
int main()
{
    int coins[] = { 1, 2, 3 };
    int n = sizeof(coins) / sizeof(coins[0]);
    int sum = 4;
    cout << count(coins, n, sum);
    return 0;
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)

C




// C program for coin change problem.
#include <stdio.h>
 
int count(int coins[], int n, int sum)
{
    int i, j, x, y;
 
    // We need sum+1 rows as the table is constructed
    // in bottom up manner using the base case 0
    // value case (sum = 0)
    int table[sum + 1][n];
 
    // Fill the entries for 0 value case (n = 0)
    for (i = 0; i < n; i++)
        table[0][i] = 1;
 
    // Fill rest of the table entries in bottom
    // up manner
    for (i = 1; i < sum + 1; i++) {
        for (j = 0; j < n; j++) {
            // Count of solutions including S[j]
            x = (i - coins[j] >= 0) ? table[i - coins[j]][j]
                                    : 0;
 
            // Count of solutions excluding S[j]
            y = (j >= 1) ? table[i][j - 1] : 0;
 
            // total count
            table[i][j] = x + y;
        }
    }
    return table[sum][n - 1];
}
 
// Driver program to test above function
int main()
{
    int coins[] = { 1, 2, 3 };
    int n = sizeof(coins) / sizeof(coins[0]);
    int sum = 4;
    printf(" %d ", count(coins, n, sum));
    return 0;
}

Java




/* Dynamic Programming Java implementation of Coin
   Change problem */
import java.util.Arrays;
 
class CoinChange {
    static long countWays(int coins[], int n, int sum)
    {
        // Time complexity of this function: O(n*sum)
        // Space Complexity of this function: O(sum)
 
        // table[i] will be storing the number of solutions
        // for value i. We need sum+1 rows as the table is
        // constructed in bottom up manner using the base
        // case (sum = 0)
        long[] table = new long[sum + 1];
 
        // Initialize all table values as 0
        Arrays.fill(table, 0);
 
        // Base case (If given value is 0)
        table[0] = 1;
 
        // Pick all coins one by one and update the table[]
        // values after the index greater than or equal to
        // the value of the picked coin
        for (int i = 0; i < n; i++)
            for (int j = coins[i]; j <= sum; j++)
                table[j] += table[j - coins[i]];
 
        return table[sum];
    }
 
    // Driver Function to test above function
    public static void main(String args[])
    {
        int coins[] = { 1, 2, 3 };
        int n = coins.length;
        int sum = 4;
        System.out.println(countWays(coins, n, sum));
    }
}
// This code is contributed by Pankaj Kumar

Python




# Dynamic Programming Python implementation of Coin
# Change problem
 
 
def count(coins, n, sum):
    # We need sum+1 rows as the table is constructed
    # in bottom up manner using the base case 0 value
    # case (sum = 0)
    table = [[0 for x in range(n)] for x in range(sum+1)]
 
    # Fill the entries for 0 value case (n = 0)
    for i in range(n):
        table[0][i] = 1
 
    # Fill rest of the table entries in bottom up manner
    for i in range(1, sum+1):
        for j in range(n):
 
            # Count of solutions including coins[j]
            x = table[i - coins[j]][j] if i-coins[j] >= 0 else 0
 
            # Count of solutions excluding coins[j]
            y = table[i][j-1] if j >= 1 else 0
 
            # total count
            table[i][j] = x + y
 
    return table[sum][n-1]
 
 
# Driver program to test above function
if __name__ == '__main__':
    coins = [1, 2, 3]
    n = len(coins)
    sum = 4
    print(count(coins, n, sum))
 
# This code is contributed by Bhavya Jain

C#




/* Dynamic Programming C# implementation of Coin
Change problem */
using System;
 
class GFG {
    static long countWays(int[] coins, int n, int sum)
    {
        // table[i] will be storing the number of solutions
        // for value i. We need sum+1 rows as the table is
        // constructed in bottom up manner using the base
        // case (sum = 0)
        int[] table = new int[sum + 1];
 
        // Initialize all table values as 0
        for (int i = 0; i < table.Length; i++) {
            table[i] = 0;
        }
 
        // Base case (If given value is 0)
        table[0] = 1;
 
        // Pick all coins one by one and update the table[]
        // values after the index greater than or equal to
        // the value of the picked coin
        for (int i = 0; i < n; i++)
            for (int j = coins[i]; j <= sum; j++)
                table[j] += table[j - coins[i]];
 
        return table[sum];
    }
 
    // Driver Function
    public static void Main()
    {
        int[] coins = { 1, 2, 3 };
        int n = coins.Length;
        int sum = 4;
        Console.Write(countWays(coins, n, sum));
    }
}
// This code is contributed by Sam007

PHP




<?php
// PHP program for
// coin change problem.
 
function count1($coins, $n, $sum)
{
    // We need sum+1 rows as
    // the table is constructed
    // in bottom up manner
    // using the base case 0
    // value case (sum = 0)
    $table;
    for ($i = 0; $i < $sum + 1; $i++)
    for ($j = 0; $j < $n; $j++)
        $table[$i][$j] = 0;
     
    // Fill the entries for
    // 0 value case (n = 0)
    for ($i = 0; $i < $n; $i++)
        $table[0][$i] = 1;
 
    // Fill rest of the table
    // entries in bottom up manner
    for ($i = 1; $i < $sum + 1; $i++)
    {
        for ($j = 0; $j < $n; $j++)
        {
            // Count of solutions
            // including coins[j]
            $x = ($i-$coins[$j] >= 0) ?
                  $table[$i - $coins[$j]][$j] : 0;
 
            // Count of solutions
            // excluding S[j]
            $y = ($j >= 1) ?
                  $table[$i][$j - 1] : 0;
 
            // total count
            $table[$i][$j] = $x + $y;
        }
    }
    return $table[$sum][$n-1];
}
 
// Driver Code
$coins = array(1, 2, 3);
$n = count($coins);
$sum = 4;
echo count1($coins, $n, $sum);
 
// This code is contributed by mits
?>

Javascript




<script>
 
/* Dynamic Programming javascript implementation of Coin
   Change problem */
 
function countWays(S , m , n)
{
    // table[i] will be storing the number of solutions
    // for value i. We need sum+1 rows as the table is
    // constructed in bottom up manner using the base
    // case (sum = 0)
    // Initialize all table values as 0
    var table = Array(sum+1).fill(0);
     
 
    // Base case (If given value is 0)
    table[0] = 1;
 
    // Pick all coins one by one and update the table
    // values after the index greater than or equal to
    // the value of the picked coin
    for (i=0; i<n; i++)
        for (j=coins[i]; j<=sum; j++)
            table[j] += table[j-coins[i]];
 
    return table[sum];
}
 
// Driver Function to test above function
var coins = [1, 2, 3];
var n = coins.length;
var sum = 4;
document.write(countWays(coins, n, sum));
 
// This code is contributed by 29AjayKumar
 
</script>

Output

4

Time Complexity: O(M*sum)
Auxiliary Space: O(M*sum) 

Coin change Using the Space Optimized 1D array:

The Idea to Solve this Problem is by using the Bottom Up(Tabulation). By using the linear array for space optimization.

Follow the below steps to Implement the idea:

  • Initialize with a linear array table with values equal to 0.
  • With sum = 0, there is a way.
  • Update the level wise number of ways of coin till the ith coin.
  • Solve till j <= sum.

Below is the implementation of the above Idea.

C++




#include <bits/stdc++.h>
 
using namespace std;
 
// This code is
int count(int coins[], int n, int sum)
{
    // table[i] will be storing the number of solutions for
    // value i. We need sum+1 rows as the table is
    // constructed in bottom up manner using the base case
    // (sum = 0)
    int table[sum + 1];
 
    // Initialize all table values as 0
    memset(table, 0, sizeof(table));
 
    // Base case (If given value is 0)
    table[0] = 1;
 
    // Pick all coins one by one and update the table[]
    // values after the index greater than or equal to the
    // value of the picked coin
    for (int i = 0; i < n; i++)
        for (int j = coins[i]; j <= sum; j++)
            table[j] += table[j - coins[i]];
    return table[sum];
}
 
// Driver Code
int main()
{
    int coins[] = { 1, 2, 3 };
    int n = sizeof(coins) / sizeof(coins[0]);
    int sum = 4;
    cout << count(coins, n, sum);
    return 0;
}

Java




/* Dynamic Programming Java implementation of Coin
   Change problem */
import java.util.Arrays;
 
class CoinChange {
    static long count(int coins[], int n, int sum)
{
    // table[i] will be storing the number of solutions for
    // value i. We need sum+1 rows as the table is
    // constructed in bottom up manner using the base case
    // (sum = 0)
    int table[] = new int[sum + 1];
 
    // Base case (If given value is 0)
    table[0] = 1;
 
    // Pick all coins one by one and update the table[]
    // values after the index greater than or equal to the
    // value of the picked coin
    for (int i = 0; i < n; i++)
        for (int j = coins[i]; j <= sum; j++)
            table[j] += table[j - coins[i]];
 
    return table[sum];
}
 
    // Driver Function to test above function
    public static void main(String args[])
    {
        int coins[] = { 1, 2, 3 };
        int n = coins.length;
        int sum = 4;
        System.out.println(count(coins, n, sum));
    }
}
// This code is contributed by Pankaj Kumar

Python




# Dynamic Programming Python implementation of Coin
# Change problem
 
 
def count(coins, n, sum):
 
    # table[i] will be storing the number of solutions for
    # value i. We need sum+1 rows as the table is constructed
    # in bottom up manner using the base case (sum = 0)
    # Initialize all table values as 0
    table = [0 for k in range(sum+1)]
 
    # Base case (If given value is 0)
    table[0] = 1
 
    # Pick all coins one by one and update the table[] values
    # after the index greater than or equal to the value of the
    # picked coin
    for i in range(0, n):
        for j in range(coins[i], sum+1):
            table[j] += table[j-coins[i]]
 
    return table[sum]
 
 
# Driver program to test above function
coins = [1, 2, 3]
n = len(coins)
sum = 4
x = count(coins, n, sum)
print(x)
 
# This code is contributed by Afzal Ansari

C#




// Dynamic Programming C# implementation
// of Coin Change problem
using System;
 
class GFG {
    static int count(int[] coins, int n, int sum)
    {
        // table[i] will be storing the
        // number of solutions for value i.
        // We need sum+1 rows as the table
        // is constructed in bottom up manner
        // using the base case (sum = 0)
        int[] table = new int[sum + 1];
 
        // Base case (If given value is 0)
        table[0] = 1;
 
        // Pick all coins one by one and
        // update the table[] values after
        // the index greater than or equal
        // to the value of the picked coin
        for (int i = 0; i < n; i++)
            for (int j = coins[i]; j <= sum; j++)
                table[j] += table[j - coins[i]];
 
        return table[sum];
    }
 
    // Driver Code
    public static void Main()
    {
        int[] coins = { 1, 2, 3 };
        int n = coins.Length;
        int sum = 4;
        Console.Write(count(coins, n, sum));
    }
}
 
// This code is contributed by Raj

PHP




<?php
function count_1( &$coins, $n, $sum )
{
    // table[i] will be storing the number
    // of solutions for value i. We need sum+1
    // rows as the table is constructed in
    // bottom up manner using the base case (sum = 0)
    $table = array_fill(0, $sum + 1, NULl);
 
    // Base case (If given value is 0)
    $table[0] = 1;
 
    // Pick all coins one by one and update
    // the table[] values after the index
    // greater than or equal to the value
    // of the picked coin
    for($i = 0; $i < $n; $i++)
        for($j = $coins[$i]; $j <= $sum; $j++)
            $table[$j] += $table[$j - $coins[$i]];
 
    return $table[$sum];
}
 
// Driver Code
$coins = array(1, 2, 3);
$n = sizeof($coins);
$sum = 4;
$x = count_1($coins, $n, $sum);
echo $x;
 
// This code is contributed
// by ChitraNayal
?>

Javascript




<script>
    // Dynamic Programming Javascript implementation
    // of Coin Change problem
       
    function count(coins, n, sum)
    {
        // table[i] will be storing the
        // number of solutions for value i.
        // We need n+1 rows as the table
        // is constructed in bottom up manner
        // using the base case (sum = 0)
        let table = new Array(sum + 1);
        table.fill(0);
 
        // Base case (If given value is 0)
        table[0] = 1;
 
        // Pick all coins one by one and
        // update the table[] values after
        // the index greater than or equal
        // to the value of the picked coin
        for(let i = 0; i < n; i++)
            for(let j = coins[i]; j <= sum; j++)
                table[j] += table[j - coins[i]];
 
        return table[sum];
    }
     
    let coins = [1, 2, 3];
    let n = coins.length;
    let sum = 4;
    document.write(count(coins, n, sum));
</script>

Output

4

Time Complexity: O(N*sum)
Auxiliary Space: O(sum)

Coin change using the Top Down (Memoization) Dynamic Programming: 

The idea is to find the Number of ways of Denominations By using the Top Down (Memoization). 

Follow the below steps to Implement the idea:

  • Creating a 2-D vector to store the Overlapping Solutions
  • Keep Track of the overlapping subproblems while Traversing the array coins[]
  • Recall them whenever needed 

Below is the implementation using the Top Down Memoized Approach

C++




#include <bits/stdc++.h>
using namespace std;
 
int coinchange(vector<int>& a, int v, int n,
               vector<vector<int> >& dp)
{
    if (v == 0)
        return dp[n][v] = 1;
    if (n == 0)
        return 0;
    if (dp[n][v] != -1)
        return dp[n][v];
    if (a[n - 1] <= v) {
        // Either Pick this coin or not
        return dp[n][v] = coinchange(a, v - a[n - 1], n, dp)
                          + coinchange(a, v, n - 1, dp);
    }
    else // We have no option but to leave this coin
        return dp[n][v] = coinchange(a, v, n - 1, dp);
}
int32_t main()
{
    int tc = 1;
    // cin >> tc;
    while (tc--) {
        int n, v;
        n = 3, v = 4;
        vector<int> a = { 1, 2, 3 };
        vector<vector<int> > dp(n + 1,
                                vector<int>(v + 1, -1));
        int res = coinchange(a, v, n, dp);
        cout << res << endl;
    }
}
// This Code is Contributed by
// Harshit Agrawal NITT

Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
    static int coinchange(int[] a, int v, int n, int[][] dp)
    {
        if (v == 0)
            return dp[n][v] = 1;
        if (n == 0)
            return 0;
        if (dp[n][v] != -1)
            return dp[n][v];
        if (a[n - 1] <= v) {
 
            // Either Pick this coin or not
            return dp[n][v]
                = coinchange(a, v - a[n - 1], n, dp)
                  + coinchange(a, v, n - 1, dp);
        }
        else // We have no option but to leave this coin
            return dp[n][v] = coinchange(a, v, n - 1, dp);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int tc = 1;
        while (tc != 0) {
            int n, v;
            n = 3;
            v = 4;
            int[] a = { 1, 2, 3 };
            int[][] dp = new int[n + 1][v + 1];
            for (int[] row : dp)
                Arrays.fill(row, -1);
            int res = coinchange(a, v, n, dp);
            System.out.println(res);
            tc--;
        }
    }
}
 
// This code is contributed by rajsanghavi9.

Python3




# Python program for the above approach
def coinchange(a, v, n, dp):
    if (v == 0):
        dp[n][v] = 1
        return dp[n][v]
    if (n == 0):
        return 0
    if (dp[n][v] != -1):
        return dp[n][v]
    if (a[n - 1] <= v):
 
        # Either Pick this coin or not
        dp[n][v] = coinchange(a, v - a[n - 1], n, dp) + \
            coinchange(a, v, n - 1, dp)
        return dp[n][v]
    else# We have no option but to leave this coin
        dp[n][v] = coinchange(a, v, n - 1, dp)
        return dp[n][v]
 
 
# Driver code
if __name__ == '__main__':
    tc = 1
    while (tc != 0):
        n = 3
        v = 4
        a = [1, 2, 3]
        dp = [[-1 for i in range(v+1)] for j in range(n+1)]
        res = coinchange(a, v, n, dp)
        print(res)
        tc -= 1
 
# This code is contributed by Rajput-Ji

C#




// C# program for the above approach
using System;
public class GFG {
 
    static int coinchange(int[] a, int v, int n, int[, ] dp)
    {
        if (v == 0)
            return dp[n, v] = 1;
        if (n == 0)
            return 0;
        if (dp[n, v] != -1)
            return dp[n, v];
        if (a[n - 1] <= v) {
 
            // Either Pick this coin or not
            return dp[n, v]
                = coinchange(a, v - a[n - 1], n, dp)
                  + coinchange(a, v, n - 1, dp);
        }
        else // We have no option but to leave this coin
            return dp[n, v] = coinchange(a, v, n - 1, dp);
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int tc = 1;
        while (tc != 0) {
            int n, v;
            n = 3;
            v = 4;
            int[] a = { 1, 2, 3 };
            int[, ] dp = new int[n + 1, v + 1];
            for (int j = 0; j < n + 1; j++) {
                for (int l = 0; l < v + 1; l++)
                    dp[j, l] = -1;
            }
            int res = coinchange(a, v, n, dp);
            Console.WriteLine(res);
            tc--;
        }
    }
}
 
// This code is contributed by umadevi9616

Javascript




<script>
// javascript program for the above approach
 
    function coinchange(a , v , n,  dp) {
        if (v == 0)
            return dp[n][v] = 1;
        if (n == 0)
            return 0;
        if (dp[n][v] != -1)
            return dp[n][v];
        if (a[n - 1] <= v) {
 
            // Either Pick this coin or not
            return dp[n][v] = coinchange(a, v - a[n - 1], n, dp) + coinchange(a, v, n - 1, dp);
        } else // We have no option but to leave this coin
            return dp[n][v] = coinchange(a, v, n - 1, dp);
    }
 
    // Driver code
     
        var tc = 1;
        while (tc != 0) {
            var n, v;
            n = 3;
            v = 4;
            var a = [ 1, 2, 3 ];
            var dp = Array(n+1).fill().map(() => Array(v+1).fill(-1));
             
            var res = coinchange(a, v, n, dp);
            document.write(res);
            tc--;
        }
 
// This code contributed by umadevi9616
</script>

Output

4

Time Complexity: O(N*sum)
Auxiliary Space: O(N*sum)

This article is contributed by: Mayukh Sinha. Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!