Sum of multiples of A and B less than N

Given a number N, the task is to find the sum of all the multiples of A and B below N.

Examples:

Input:N = 11, A= 8, B= 2
Output: Sum = 30
Multiples of 8 less than 11 is 8 only.
Multiples of 2 less than 11 is 2, 4, 6, 8, 10 and their sum is 30.
As 8 is common in both so it is counted only once.

Input: N = 100, A= 5, B= 10
Output: Sum = 950

A naive approach is to iterate through 1 to and find the multiples of A and B and add them to sum. At the end of the loop display the sum.

Efficient approach: As the multiples of A will form an AP series a, 2a, 3a….
and B forms an AP series b, 2b, 3b …
On adding the sum of these two series we will get the sum of multiples of both the numbers but there might be some common multiples so remove the duplicates from the sum of these two series by subtracting the multiples of lcm(A, B). So, subtract the series of lcm(A, B) .
So the sum of multiples of A and B less than N is Sum(A)+Sum(B)-Sum(lcm(A, B)).

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the sum of all
// multiples of A and B below N
#include <bits/stdc++.h>
using namespace std;
#define ll long long int 
  
// Function to find sum of AP series
ll sumAP(ll n, ll d)
{
    // Number of terms
    n /= d;
  
    return (n) * (1 + n) * d / 2;
}
  
// Function to find the sum of all
// multiples of A and B below N
ll sumMultiples(ll A, ll B, ll n)
{
    // Since, we need the sum of
    // multiples less than N
    n--;
  
    // common factors of A and B
    ll common = (A * B) / __gcd(A, B);
  
    return sumAP(n, A) + sumAP(n, B) - sumAP(n, common);
}
  
// Driver code
int main()
{
    ll n = 100, A = 5, B = 10;
  
    cout << "Sum = " << sumMultiples(A, B, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the sum of all
// multiples of A and B below N
  
class GFG{
  
static int __gcd(int a, int b) 
    
      if (b == 0
        return a; 
      return __gcd(b, a % b);  
    
      
// Function to find sum of AP series
static int sumAP(int n, int d)
{
    // Number of terms
    n /= d;
  
    return (n) * (1 + n) * d / 2;
}
  
// Function to find the sum of all
// multiples of A and B below N
static int sumMultiples(int A, int B, int n)
{
    // Since, we need the sum of
    // multiples less than N
    n--;
  
    // common factors of A and B
    int common = (A * B) / __gcd(A,B);
  
    return sumAP(n, A) + sumAP(n, B) - sumAP(n, common);
}
  
// Driver code
public static void main(String[] args)
{
    int n = 100, A = 5, B = 10;
  
    System.out.println("Sum = "+sumMultiples(A, B, n));
}
}
// this code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find the sum of 
# all multiples of A and B below N
from math import gcd,sqrt
  
# Function to find sum of AP series
def sumAP(n, d):
      
    # Number of terms
    n = int(n / d)
  
    return (n) * (1 + n) * d / 2
  
# Function to find the sum of all
# multiples of A and B below N
def sumMultiples(A, B, n):
      
    # Since, we need the sum of
    # multiples less than N
    n -= 1
  
    # common factors of A and B
    common = int((A * B) / gcd(A, B))
  
    return (sumAP(n, A) + sumAP(n, B) - 
            sumAP(n, common))
  
# Driver code
if __name__ == '__main__':
    n = 100
    A = 5
    B = 10
  
    print("Sum =", int(sumMultiples(A, B, n)))
  
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the sum of all
// multiples of A and B below N
  
class GFG{
  
static int __gcd(int a, int b) 
    
    if (b == 0) 
        return a; 
    return __gcd(b, a % b); 
    
      
// Function to find sum of AP series
static int sumAP(int n, int d)
{
    // Number of terms
    n /= d;
  
    return (n) * (1 + n) * d / 2;
}
  
// Function to find the sum of all
// multiples of A and B below N
static int sumMultiples(int A, int B, int n)
{
    // Since, we need the sum of
    // multiples less than N
    n--;
  
    // common factors of A and B
    int common = (A * B) / __gcd(A,B);
  
    return sumAP(n, A) + sumAP(n, B) - sumAP(n, common);
}
  
// Driver code
public static void Main()
{
    int n = 100, A = 5, B = 10;
  
    System.Console.WriteLine("Sum = "+sumMultiples(A, B, n));
}
}
// this code is contributed by mits

chevron_right


PHP

Output:

Sum = 950


My Personal Notes arrow_drop_up

Second year Department of Information Technology Jadavpur University

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.