# Count of Multiples of A ,B or C less than or equal to N

Given four integers N, A, B and C. The task is to find the count of integers from the range [1, N] which are divisible by either A, B or C.

Examples:

Input: A = 2, B = 3, C = 5, N = 10
Output: 8
2, 3, 4, 5, 6, 8, 9 and 10 are the only number from the
range [1, 10] which are divisible by wither 2, 3 or 5.

Input: A = 7, B = 3, C = 5, N = 100
Output: 55

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: An efficient approach is to use the concept of set theory. As we have to find numbers that are divisible by a or b or c. So. the count of numbers divisible either by A, B or C is (num/A) + (num/B) + (num/C) – (num/lcm(A, B)) – (num/lcm(A, B)) – (num/lcm(A, C)) + – (num/lcm(A, B, C))

Below is the implementation of the above approach:

## C++

 // C++ implementation of the approach  #include  using namespace std;     // Function to return the  // gcd of a and b  long gcd(long a, long b)  {      if (a == 0)          return b;         return gcd(b % a, a);  }     // Function to return the count of integers  // from the range [1, num] which are  // divisible by either a, b or c  long divTermCount(long a, long b, long c, long num)  {      // Calculate the number of terms divisible by a, b      // and c then remove the terms which are divisible      // by both (a, b) or (b, c) or (c, a) and then      // add the numbers which are divisible by a, b and c      return ((num / a) + (num / b) + (num / c)              - (num / ((a * b) / gcd(a, b)))              - (num / ((c * b) / gcd(c, b)))              - (num / ((a * c) / gcd(a, c)))              + (num / ((a * b * c) / gcd(gcd(a, b), c))));  }     // Driver code  int main()  {      long a = 7, b = 3, c = 5, n = 100;         cout << divTermCount(a, b, c, n);         return 0;  }

## Java

 // Java implementation of the approach  import java.util.*;         class GFG  {         // Function to return the  // gcd of a and b  static long gcd(long a, long b)  {      if (a == 0)          return b;         return gcd(b % a, a);  }     // Function to return the count of integers  // from the range [1, num] which are  // divisible by either a, b or c  static long divTermCount(long a, long b,                            long c, long num)  {      // Calculate the number of terms divisible by a, b      // and c then remove the terms which are divisible      // by both (a, b) or (b, c) or (c, a) and then      // add the numbers which are divisible by a, b and c      return ((num / a) + (num / b) + (num / c) -                   (num / ((a * b) / gcd(a, b))) -                   (num / ((c * b) / gcd(c, b))) -                   (num / ((a * c) / gcd(a, c))) +                   (num / ((a * b * c) / gcd(gcd(a, b), c))));  }     // Driver code  static public void main (String []arr)  {      long a = 7, b = 3, c = 5, n = 100;         System.out.println(divTermCount(a, b, c, n));  }  }     // This code is contributed by 29AjayKumar

## Python3

 # Python3 implementation of the approach      # Function to return the   # gcd of a and b   def gcd(a, b) :          if (a == 0) :          return b;          return gcd(b % a, a);      # Function to return the count of integers   # from the range [1, num] which are   # divisible by either a, b or c   def divTermCount(a, b, c, num) :          # Calculate the number of terms divisible by a, b       # and c then remove the terms which are divisible       # by both (a, b) or (b, c) or (c, a) and then       # add the numbers which are divisible by a, b and c       return ((num // a) + (num // b) + (num // c) -                   (num // ((a * b) // gcd(a, b))) -                   (num // ((c * b) // gcd(c, b))) -                   (num // ((a * c) // gcd(a, c))) +                   (num // ((a * b * c) // gcd(gcd(a, b), c))));      # Driver code   if __name__ == "__main__" :          a = 7; b = 3; c = 5; n = 100;          print(divTermCount(a, b, c, n));      # This code is contributed by AnkitRai01

## C#

 // C# implementation for above approach  using System;         class GFG  {         // Function to return the  // gcd of a and b  static long gcd(long a, long b)  {      if (a == 0)          return b;         return gcd(b % a, a);  }     // Function to return the count of integers  // from the range [1, num] which are  // divisible by either a, b or c  static long divTermCount(long a, long b,                            long c, long num)  {      // Calculate the number of terms divisible by a, b      // and c then remove the terms which are divisible      // by both (a, b) or (b, c) or (c, a) and then      // add the numbers which are divisible by a, b and c      return ((num / a) + (num / b) + (num / c) -               (num / ((a * b) / gcd(a, b))) -               (num / ((c * b) / gcd(c, b))) -               (num / ((a * c) / gcd(a, c))) +               (num / ((a * b * c) / gcd(gcd(a, b), c))));  }     // Driver code  static public void Main (String []arr)  {      long a = 7, b = 3, c = 5, n = 100;         Console.WriteLine(divTermCount(a, b, c, n));  }  }     // This code is contributed by 29AjayKumar

Output:

55


My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : AnkitRai01, 29AjayKumar