Open In App
Related Articles

Sum of factorials of Prime numbers in a Linked list

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given a Linked list of N integers, the task is to find the sum of factorials of each prime element in the list.
Examples:

Input: L1 = 4 -> 6 -> 2 -> 12 -> 3 
Output:
Explanation: 
Prime numbers are 2 and 3, hence 2! + 3! = 2 + 6 = 8.
Input: L1 = 7 -> 4 -> 5 
Output: 5160 
Explanation: 
Prime numbers are 7 and 5, hence 7! + 5! = 5160. 

Approach: To solve the problem mentioned above follow the steps given below: 

  • Implement a function factorial(n) that finds the factorial of N .
  • Initialize a variable sum = 0. Now, traverse the given list and for each node check whether node is prime or not.
  • If node is prime then update sum = sum + factorial(node) otherwise else move the node to next.
  • Print the calculated sum in the end.

Below is the implementation of the above approach:

C++

// C++ implementation to fine Sum of
// prime factorials in a Linked list
 
#include <bits/stdc++.h>
using namespace std;
 
// Node of the singly linked list
struct Node {
    int data;
    Node* next;
};
 
// Function to insert a node
// at the beginning
// of the singly Linked List
void push(Node** head_ref, int new_data)
{
    // allocate node
    Node* new_node
        = (Node*)malloc(
            sizeof(struct Node));
 
    // put in the data
    new_node->data = new_data;
 
    // link the old list
    // off the new node
    new_node->next = (*head_ref);
 
    // move the head to point
    // to the new node
    (*head_ref) = new_node;
}
 
// Function to return the factorial of N
int factorial(int n)
{
    int f = 1;
    for (int i = 1; i <= n; i++) {
        f *= i;
    }
    return f;
}
 
// Function to check if number is prime
bool isPrime(int n)
{
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0
            || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to return the sum of
// factorials of the LL elements
int sumFactorial(Node* head_1)
{
 
    // To store the required sum
    Node* ptr = head_1;
    int s = 0;
    while (ptr != NULL) {
 
        // Add factorial of all the elements
        if (isPrime(ptr->data)) {
            s += factorial(ptr->data);
            ptr = ptr->next;
        }
        else
            ptr = ptr->next;
    }
    return s;
}
 
// Driver code
int main()
{
    Node* head1 = NULL;
 
    push(&head1, 4);
    push(&head1, 6);
    push(&head1, 2);
    push(&head1, 12);
    push(&head1, 3);
 
    cout << sumFactorial(head1);
    return 0;
}

                    

Java

// Java implementation to find Sum of
// prime factorials in a Linked list
 
import java.util.*;
 
class GFG {
 
    // Node of the singly linked list
    static class Node {
        int data;
        Node next;
    };
 
    // Function to insert a
    // node at the beginning
    // of the singly Linked List
    static Node push(
        Node head_ref,
        int new_data)
    {
        // allocate node
        Node new_node = new Node();
 
        // put in the data
        new_node.data = new_data;
 
        // link the old list
        // off the new node
        new_node.next = (head_ref);
 
        // move the head to point
        // to the new node
        (head_ref) = new_node;
        return head_ref;
    }
 
    // Function to return
    // the factorial of n
    static int factorial(int n)
    {
        int f = 1;
        for (int i = 1; i <= n; i++) {
            f *= i;
        }
        return f;
    }
 
    // Function to check if number is prime
    static boolean isPrime(int n)
    {
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (int i = 5; i * i <= n; i = i + 6)
            if (n % i == 0
                || n % (i + 2) == 0)
                return false;
 
        return true;
    }
 
    // Function to return the sum of
    // factorials of the LL elements
    static int sumFactorial(Node head_1)
    {
        Node ptr = head_1;
        // To store the required sum
        int s = 0;
        while (ptr != null) {
 
            // Add factorial of
            // all the elements
            if (isPrime(ptr.data)) {
                s += factorial(ptr.data);
                ptr = ptr.next;
            }
            else {
                ptr = ptr.next;
            }
        }
        return s;
    }
 
    // Driver Code
    public static void main(String args[])
    {
 
        Node head1 = null;
 
        head1 = push(head1, 4);
        head1 = push(head1, 6);
        head1 = push(head1, 2);
        head1 = push(head1, 12);
        head1 = push(head1, 3);
        int ans = sumFactorial(head1);
 
        System.out.println(ans);
    }
}

                    

Python3

# Python implementation of the approach
class Node: 
          
    def __init__(self, data): 
        self.data = data 
        self.next = next
              
# Function to insert a
# node at the beginning 
# of the singly Linked List 
def push( head_ref, new_data) :
      
    # allocate node 
    new_node = Node(0
      
    # put in the data 
    new_node.data = new_data 
      
    # link the old list
    # off the new node 
    new_node.next = (head_ref) 
      
    # move the head to
    # point to the new node 
    (head_ref) = new_node
    return head_ref
     
def factorial(n):
    f = 1;
    for i in range(1, n + 1):
        f *= i;
    return f;
  # prime for def 
def isPrime(n):
    
    # Corner cases
    if (n <= 1):
        return False
    if (n <= 3):
        return True
    
    # This is checked so that we can skip
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0):
        return False
    i = 5
    while ( i * i <= n ):
        if (n % i == 0
            or n % (i + 2) == 0):
            return False
        i += 6;
    
    return True
   
# Function to return the sum of
# factorials of the LL elements
def sumFactorial(head_ref1):
   
    # To store the required sum
    s = 0;
    ptr1 = head_ref1
    while (ptr1 != None) :
   
        # Add factorial of all the elements
        if(isPrime(ptr1.data)):
            s += factorial(ptr1.data);
            ptr1 = ptr1.next
        else:
            ptr1 = ptr1.next
    return s;
# Driver code 
# start with the empty list 
head1 = None
# create the linked list 
head1 = push(head1, 4
head1 = push(head1, 6
head1 = push(head1, 2
head1 = push(head1, 12
head1 = push(head1, 3)
ans = sumFactorial(head1)
print(ans)

                    

C#

// C# implementation to find Sum of
// prime factorials in a Linked list
using System;
 
class GFG{
 
// Node of the singly linked list
class Node
{
    public int data;
    public Node next;
};
 
// Function to insert a node
// at the beginning of the
// singly Linked List
static Node push(Node head_ref,
                 int new_data)
{
     
    // Allocate node
    Node new_node = new Node();
 
    // Put in the data
    new_node.data = new_data;
 
    // Link the old list
    // off the new node
    new_node.next = (head_ref);
 
    // Move the head to point
    // to the new node
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to return
// the factorial of n
static int factorial(int n)
{
    int f = 1;
    for(int i = 1; i <= n; i++)
    {
       f *= i;
    }
    return f;
}
 
// Function to check if number
// is prime
static bool isPrime(int n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for(int i = 5; i * i <= n;
            i = i + 6)
       if (n % i == 0 ||
           n % (i + 2) == 0)
           return false;
 
    return true;
}
 
// Function to return the sum of
// factorials of the LL elements
static int sumFactorial(Node head_1)
{
    Node ptr = head_1;
     
    // To store the required sum
    int s = 0;
    while (ptr != null)
    {
 
        // Add factorial of
        // all the elements
        if (isPrime(ptr.data))
        {
            s += factorial(ptr.data);
            ptr = ptr.next;
        }
        else
        {
            ptr = ptr.next;
        }
    }
    return s;
}
 
// Driver Code
public static void Main(String []args)
{
    Node head1 = null;
 
    head1 = push(head1, 4);
    head1 = push(head1, 6);
    head1 = push(head1, 2);
    head1 = push(head1, 12);
    head1 = push(head1, 3);
     
    int ans = sumFactorial(head1);
 
    Console.WriteLine(ans);
}
}
 
// This code is contributed by Amit Katiyar

                    

Javascript

<script>
      // JavaScript implementation to find Sum of
      // prime factorials in a Linked list
      // Node of the singly linked list
      class Node {
        constructor() {
          this.data = 0;
          this.next = null;
        }
      }
 
      // Function to insert a node
      // at the beginning of the
      // singly Linked List
      function push(head_ref, new_data)
      {
       
        // Allocate node
        var new_node = new Node();
 
        // Put in the data
        new_node.data = new_data;
 
        // Link the old list
        // off the new node
        new_node.next = head_ref;
 
        // Move the head to point
        // to the new node
        head_ref = new_node;
        return head_ref;
      }
 
      // Function to return
      // the factorial of n
      function factorial(n) {
        var f = 1;
        for (var i = 1; i <= n; i++) {
          f *= i;
        }
        return f;
      }
 
      // Function to check if number
      // is prime
      function isPrime(n) {
        // Corner cases
        if (n <= 1) return false;
        if (n <= 3) return true;
 
        if (n % 2 == 0 || n % 3 == 0) return false;
 
        for (var i = 5; i * i <= n; i = i + 6)
          if (n % i == 0 || n % (i + 2) == 0) return false;
 
        return true;
      }
 
      // Function to return the sum of
      // factorials of the LL elements
      function sumFactorial(head_1) {
        var ptr = head_1;
 
        // To store the required sum
        var s = 0;
        while (ptr != null)
        {
         
          // Add factorial of
          // all the elements
          if (isPrime(ptr.data))
          {
            s += factorial(ptr.data);
            ptr = ptr.next;
          } else {
            ptr = ptr.next;
          }
        }
        return s;
      }
 
      // Driver Code
      var head1 = null;
 
      head1 = push(head1, 4);
      head1 = push(head1, 6);
      head1 = push(head1, 2);
      head1 = push(head1, 12);
      head1 = push(head1, 3);
 
      var ans = sumFactorial(head1);
 
      document.write(ans);
       
      // This code is contributed by rdtank.
    </script>

                    

Output
8





Method 2 (Sieve of Eratosthenes algorithm)

Algorithm

  • Define a function factorial(n) that takes an integer n as input 
  • It returns the factorial of n using a recursive approach, with base cases for n=0 and n=1.
  • Define a function sum_of_factorials_of_primes(head) that takes a linked list head as input 
    •  calculates the sum of factorials of all prime elements in the list.
  • Initialize a variable max_value to 0
    •  Traverse the linked list to find the maximum value. 
    •  Set max_value to the maximum value found.
  • Generate a list is_prime of boolean values indicating whether each integer up to max_value is prime or not, using the Sieve of Eratosthenes algorithm.
  • Initialize a variable sum to 0
    •  Traverse the linked list again. 
    •  add the factorial of that value to the sum.
  • Return the sum. 

C++

#include <iostream>
#include <vector>
#include <cmath>
 
using namespace std;
 
// Defining the linked list node
struct Node {
    int val;
    struct Node* next;
};
 
// Function to calculate factorial of a number
int factorial(int n)
{
    if (n == 0 || n == 1)
        return 1;
    else
        return n * factorial(n - 1);
}
 
// Function to find sum of factorials of prime elements in linked list
int sum_of_factorials_of_primes(struct Node* head)
{
    int max_value = 0;
    struct Node* current = head;
    while (current != NULL) {
        max_value = max(max_value, current->val);
        current = current->next;
    }
 
    // Using Sieve of Eratosthenes algorithm to pre-calculate all primes up to max_value
    vector<bool> is_prime(max_value + 1, true);
    is_prime[0] = is_prime[1] = false;
    for (int i = 2; i <= sqrt(max_value); i++) {
        if (is_prime[i]) {
            for (int j = i * i; j <= max_value; j += i) {
                is_prime[j] = false;
            }
        }
    }
 
    // Calculating the sum of factorials of all prime elements in the linked list
    int sum = 0;
    current = head;
    while (current != NULL) {
        if (current->val <= max_value && is_prime[current->val]) {
            sum += factorial(current->val);
        }
        current = current->next;
    }
    return sum;
}
 
int main()
{
    // Creating the linked list
    struct Node* head = new Node();
    struct Node* second = new Node();
    struct Node* third = new Node();
    struct Node* fourth = new Node();
    struct Node* fifth = new Node();
 
    head->val = 4;
    head->next = second;
    second->val = 6;
    second->next = third;
    third->val = 2;
    third->next = fourth;
    fourth->val = 12;
    fourth->next = fifth;
    fifth->val = 3;
    fifth->next = NULL;
 
    // Finding the sum of factorials of prime elements in the linked list
    int sum = sum_of_factorials_of_primes(head);
 
    // Printing the output
    cout << sum << endl;
 
    // Cleaning up the memory
    delete head;
    delete second;
    delete third;
    delete fourth;
    delete fifth;
 
    return 0;
}

                    

Java

class Node {
    int val;
    Node next;
 
    Node(int val) {
        this.val = val;
        this.next = null;
    }
}
 
public class FactorialSum {
    // Function to calculate factorial of a number
    static int factorial(int n) {
        if (n == 0 || n == 1)
            return 1;
        else
            return n * factorial(n - 1);
    }
 
    // Function to find sum of factorials of prime elements in linked list
    static int sumOfFactorialsOfPrimes(Node head) {
        int maxVal = 0;
        Node current = head;
 
        // Find the maximum value in the linked list
        while (current != null) {
            maxVal = Math.max(maxVal, current.val);
            current = current.next;
        }
 
        // Using Sieve of Eratosthenes algorithm to pre-calculate all primes up to maxVal
        boolean[] isPrime = new boolean[maxVal + 1];
        for (int i = 2; i <= maxVal; i++) {
            isPrime[i] = true;
        }
 
        for (int i = 2; i <= Math.sqrt(maxVal); i++) {
            if (isPrime[i]) {
                for (int j = i * i; j <= maxVal; j += i) {
                    isPrime[j] = false;
                }
            }
        }
 
        // Calculating the sum of factorials of all prime elements in the linked list
        int sum = 0;
        current = head;
        while (current != null) {
            if (current.val <= maxVal && isPrime[current.val]) {
                sum += factorial(current.val);
            }
            current = current.next;
        }
        return sum;
    }
 
    public static void main(String[] args) {
        // Creating the linked list
        Node head = new Node(4);
        Node second = new Node(6);
        Node third = new Node(2);
        Node fourth = new Node(12);
        Node fifth = new Node(3);
 
        head.next = second;
        second.next = third;
        third.next = fourth;
        fourth.next = fifth;
 
        // Finding the sum of factorials of prime elements in the linked list
        int sum = sumOfFactorialsOfPrimes(head);
 
        // Printing the output
        System.out.println(sum);
    }
}

                    

Python3

# function to calculate factorial of a number
def factorial(n):
    if n == 0 or n == 1:
        return 1
    else:
        return n * factorial(n - 1)
 
# function to find sum of factorials of prime elements in linked list
def sum_of_factorials_of_primes(head):
    max_value = 0
    current = head
    while current != None:
        max_value = max(max_value, current.val)
        current = current.next
 
    # using Sieve of Eratosthenes algorithm to pre-calculate all primes up to max_value
    is_prime = [True] * (max_value + 1)
    is_prime[0] = is_prime[1] = False
    for i in range(2, int(max_value**0.5) + 1):
        if is_prime[i]:
            for j in range(i*i, max_value+1, i):
                is_prime[j] = False
 
    # calculating the sum of factorials of all prime elements in the linked list
    sum = 0
    current = head
    while current != None:
        if current.val <= max_value and is_prime[current.val]:
            sum += factorial(current.val)
        current = current.next
    return sum
# defining the linked list node
class Node:
    def __init__(self, val=0, next=None):
        self.val = val
        self.next = next
 
# creating the linked list
head = Node(4)
head.next = Node(6)
head.next.next = Node(2)
head.next.next.next = Node(12)
head.next.next.next.next = Node(3)
 
# finding the sum of factorials of prime elements in the linked list
sum = sum_of_factorials_of_primes(head)
 
# printing the output
print(sum)

                    

C#

using System;
using System.Collections.Generic;
 
// Defining the linked list node
class Node
{
    public int val;
    public Node next;
}
 
class Program
{
    // Function to calculate factorial of a number
    static int Factorial(int n)
    {
        if (n == 0 || n == 1)
            return 1;
        else
            return n * Factorial(n - 1);
    }
 
    // Function to find the sum of factorials of prime elements in linked list
    static int SumOfFactorialsOfPrimes(Node head)
    {
        int maxValue = 0;
        Node current = head;
        while (current != null)
        {
            maxValue = Math.Max(maxValue, current.val);
            current = current.next;
        }
 
        // Using Sieve of Eratosthenes algorithm to pre-calculate all primes up to maxValue
        bool[] isPrime = new bool[maxValue + 1];
        for (int i = 0; i <= maxValue; i++)
        {
            isPrime[i] = true;
        }
        isPrime[0] = isPrime[1] = false;
 
        for (int i = 2; i <= Math.Sqrt(maxValue); i++)
        {
            if (isPrime[i])
            {
                for (int j = i * i; j <= maxValue; j += i)
                {
                    isPrime[j] = false;
                }
            }
        }
 
        // Calculating the sum of factorials of all prime elements in the linked list
        int sum = 0;
        current = head;
        while (current != null)
        {
            if (current.val <= maxValue && isPrime[current.val])
            {
                sum += Factorial(current.val);
            }
            current = current.next;
        }
        return sum;
    }
 
    static void Main()
    {
        // Creating the linked list
        Node head = new Node { val = 4 };
        Node second = new Node { val = 6 };
        Node third = new Node { val = 2 };
        Node fourth = new Node { val = 12 };
        Node fifth = new Node { val = 3 };
 
        head.next = second;
        second.next = third;
        third.next = fourth;
        fourth.next = fifth;
        fifth.next = null;
 
        // Finding the sum of factorials of prime elements in the linked list
        int sum = SumOfFactorialsOfPrimes(head);
 
        // Printing the output
        Console.WriteLine(sum);
    }
}

                    

Javascript

// Defining the linked list node
class Node {
    constructor(val) {
        this.val = val;
        this.next = null;
    }
}
 
// Function to calculate factorial of a number
function factorial(n) {
    if (n === 0 || n === 1) {
        return 1;
    } else {
        return n * factorial(n - 1);
    }
}
 
// Function to find sum of factorials of prime elements in linked list
function sumOfFactorialsOfPrimes(head) {
    let max_value = 0;
    let current = head;
    while (current !== null) {
        max_value = Math.max(max_value, current.val);
        current = current.next;
    }
 
    // Using Sieve of Eratosthenes algorithm to pre-calculate all primes up to max_value
    let is_prime = new Array(max_value + 1).fill(true);
    is_prime[0] = is_prime[1] = false;
    for (let i = 2; i <= Math.sqrt(max_value); i++) {
        if (is_prime[i]) {
            for (let j = i * i; j <= max_value; j += i) {
                is_prime[j] = false;
            }
        }
    }
 
    // Calculating the sum of factorials of all prime elements in the linked list
    let sum = 0;
    current = head;
    while (current !== null) {
        if (current.val <= max_value && is_prime[current.val]) {
            sum += factorial(current.val);
        }
        current = current.next;
    }
    return sum;
}
 
// Creating the linked list
const head = new Node(4);
const second = new Node(6);
const third = new Node(2);
const fourth = new Node(12);
const fifth = new Node(3);
 
head.next = second;
second.next = third;
third.next = fourth;
fourth.next = fifth;
 
// Finding the sum of factorials of prime elements in the linked list
const sum = sumOfFactorialsOfPrimes(head);
 
// Printing the output
console.log(sum);
 
// No need to clean up memory in JavaScript (handled by the garbage collector)

                    

Output
8





Time complexity  : O(n*max_value+max_value*log(log(max_value))), where n is the length of the linked list and max_value is the maximum value in the linked list,   
Space complexity : O(max_value) for the is_prime list.



Last Updated : 16 Feb, 2024
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads