Find the unit place digit of sum of N factorials

Given a number N, the task is to find units place digit of the first N natural numbers factorials, i.e. 1!+2!+3!+….N! where N<=10e18.

Examples:

Input: n = 2 
Output: 3
1! + 2! = 3
Last digit is 3

Input: n = 3
Output: 9
1! + 2! + 3! = 9
Last digit is 9

Naive Approach: In this approach, simply calculate factorial of each number and find sum of these. Finally get the unit place digit of sum. This will take a lot of time and unnecessary calculations.

Efficient Approach: In this approach, only unit’s digit of N is to be calculated in the range [1, 5], because:
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
so on.

As 5!=120, and factorial of number greater than 5 have trailing zeros. So, N>=5 doesn’t contribrute in unit place while doing sum.

Therefore:

if (n < 5)
    ans = (1 ! + 2 ! +..+ n !) % 10;
else
    ans = (1 ! + 2 ! + 3 ! + 4 !) % 10;

Note : We know (1! + 2! + 3! + 4!) % 10 = 3
So we always return 3 when n is greater 
than 4.

Below is the implementation of the efficient approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the unit place digit
// of the first N natural numbers factorials
#include <iostream>
using namespace std;
  
// Function to find the unit's place digit
int get_unit_digit(long long int N)
{
  
    // Let us write for cases when
    // N is smaller than or equal
    // to 4.
    if (N == 0 || N == 1)
       return 1;
    else if (N == 2)
       return 3;
    else  if (N == 3)
       return 9;
  
    // We know following
    // (1! + 2! + 3! + 4!) % 10 = 3
    else // (N >= 4) 
       return 3;
}
  
// Driver code
int main()
{
    long long int N = 1;
  
    for (N = 0; N <= 10; N++)
        cout << "For N = " << N
             << " : " << get_unit_digit(N)
             << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java  program to find the unit place digit 
// of the first N natural numbers factorials
  
import java.io.*;
  
class GFG {
      
      
// Function to find the unit's place digit 
static int get_unit_digit(  int N) 
  
    // Let us write for cases when 
    // N is smaller than or equal 
    // to 4. 
    if (N == 0 || N == 1
    return 1
    else if (N == 2
    return 3
    else if (N == 3
    return 9
  
    // We know following 
    // (1! + 2! + 3! + 4!) % 10 = 3 
    else // (N >= 4) 
    return 3
  
// Driver code 
      
    public static void main (String[] args) {
          
      int N = 1
  
    for (N = 0; N <= 10; N++) 
            System.out.println ("For N = " + N 
            + " : " + get_unit_digit(N)); 
    }
}
//This Code is Contributed by ajit

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the unit
# place digit of the first N natural
# numbers factorials 
  
# Function to find the unit's place digit
def get_unit_digit(N):
      
    # Let us write for cases when 
    # N is smaller than or equal 
    # to 4. 
    if (N == 0 or N == 1):
        return 1
    elif (N == 2):
        return 3
    elif(N == 3):
        return 9
          
    # We know following 
    # (1! + 2! + 3! + 4!) % 10 = 3
    else:
        return 3
  
# Driver code
N = 1
for N in range(11):
    print("For N = ", N, ":",
        get_unit_digit(N), sep = ' ')
  
# This code is contributed 
# by sahilshelangia

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the unit 
// place digit of the first N 
// natural numbers factorials
using System;
  
class GFG
{
      
// Function to find the unit's
// place digit 
static int get_unit_digit( int N) 
  
    // Let us write for cases when 
    // N is smaller than or equal 
    // to 4. 
    if (N == 0 || N == 1) 
    return 1; 
    else if (N == 2) 
    return 3; 
    else if (N == 3) 
    return 9; 
  
    // We know following 
    // (1! + 2! + 3! + 4!) % 10 = 3 
    else // (N >= 4) 
    return 3; 
  
// Driver code 
static public void Main ()
{
    int N = 1; 
  
    for (N = 0; N <= 10; N++) 
        Console.WriteLine ("For N = " + N +
                " : " + get_unit_digit(N)); 
}
}
  
// This Code is Contributed by akt_mit

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP program to find the unit place digit
// of the first N natural numbers factorials
  
// Function to find the unit's place digit
function get_unit_digit($N)
{
  
    // Let us write for cases when
    // N is smaller than or equal
    // to 4.
    if ($N == 0 || $N == 1)
        return 1;
    else if ($N == 2)
        return 3;
    else if ($N == 3)
        return 9;
  
    // We know following
    // (1! + 2! + 3! + 4!) % 10 = 3
    else // (N >= 4) 
        return 3;
}
  
// Driver code
$N = 1;
  
for ($N = 0; $N <= 10; $N++)
    echo "For N = " . $N.
         " : " . get_unit_digit($N) . "\n";
  
// This code is contributed 
// by ChitraNayal
?>

chevron_right


Output:

For N = 0 : 1
For N = 1 : 1
For N = 2 : 3
For N = 3 : 9
For N = 4 : 3
For N = 5 : 3
For N = 6 : 3
For N = 7 : 3
For N = 8 : 3
For N = 9 : 3
For N = 10 : 3


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : sahilshelangia, jit_t, Ita_c