Stock Buy Sell to Maximize Profit
The cost of a stock on each day is given in an array. Find the maximum profit that you can make by buying and selling on those days. If the given array of prices is sorted in decreasing order, then profit cannot be earned at all.
Examples:
Input: arr[] = {100, 180, 260, 310, 40, 535, 695}
Output: 865
Explanation: Buy the stock on day 0 and sell it on day 3 => 310 – 100 = 210
Buy the stock on day 4 and sell it on day 6 => 695 – 40 = 655
Maximum Profit = 210 + 655 = 865Input: arr[] = {4, 2, 2, 2, 4}
Output: 2
Explanation: Buy the stock on day 1 and sell it on day 4 => 4 – 2 = 2
Maximum Profit = 2
A simple approach is to try buying the stocks and selling them every single day when profitable and keep updating the maximum profit so far.
Follow the steps below to solve the problem:
- Try to buy every stock from start to end – 1
- After that again call the maxProfit function to calculate answer
- curr_profit = price[j] – price[i] + maxProfit(start, i – 1) + maxProfit(j + 1, end)
- profit = max(profit, curr_profit)
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum profit // that can be made after buying and // selling the given stocks int maxProfit( int price[], int start, int end) { // If the stocks can't be bought if (end <= start) return 0; // Initialise the profit int profit = 0; // The day at which the stock // must be bought for ( int i = start; i < end; i++) { // The day at which the // stock must be sold for ( int j = i + 1; j <= end; j++) { // If buying the stock at ith day and // selling it at jth day is profitable if (price[j] > price[i]) { // Update the current profit int curr_profit = price[j] - price[i] + maxProfit(price, start, i - 1) + maxProfit(price, j + 1, end); // Update the maximum profit so far profit = max(profit, curr_profit); } } } return profit; } // Driver code int main() { int price[] = { 100, 180, 260, 310, 40, 535, 695 }; int n = sizeof (price) / sizeof (price[0]); cout << maxProfit(price, 0, n - 1); return 0; } |
C
// Importing the required header files #include <stdio.h> // Creating MACRO for finding the maximum number #define max(x, y) (((x) > (y)) ? (x) : (y)) // Creating MACRO for finding the minimum number #define min(x, y) (((x) < (y)) ? (x) : (y)) // Function to return the maximum profit // that can be made after buying and // selling the given stocks int maxProfit( int price[], int start, int end) { // If the stocks can't be bought if (end <= start) return 0; // Initialise the profit int profit = 0; // The day at which the stock // must be bought for ( int i = start; i < end; i++) { // The day at which the // stock must be sold for ( int j = i + 1; j <= end; j++) { // If buying the stock at ith day and // selling it at jth day is profitable if (price[j] > price[i]) { // Update the current profit int curr_profit = price[j] - price[i] + maxProfit(price, start, i - 1) + maxProfit(price, j + 1, end); // Update the maximum profit so far profit = max(profit, curr_profit); } } } return profit; } // Driver Code int main() { int price[] = { 100, 180, 260, 310, 40, 535, 695 }; int n = sizeof (price) / sizeof (price[0]); printf ( "%d" , maxProfit(price, 0, n - 1)); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the maximum profit // that can be made after buying and // selling the given stocks static int maxProfit( int price[], int start, int end) { // If the stocks can't be bought if (end <= start) return 0 ; // Initialise the profit int profit = 0 ; // The day at which the stock // must be bought for ( int i = start; i < end; i++) { // The day at which the // stock must be sold for ( int j = i + 1 ; j <= end; j++) { // If buying the stock at ith day and // selling it at jth day is profitable if (price[j] > price[i]) { // Update the current profit int curr_profit = price[j] - price[i] + maxProfit(price, start, i - 1 ) + maxProfit(price, j + 1 , end); // Update the maximum profit so far profit = Math.max(profit, curr_profit); } } } return profit; } // Driver code public static void main(String[] args) { int price[] = { 100 , 180 , 260 , 310 , 40 , 535 , 695 }; int n = price.length; System.out.print(maxProfit(price, 0 , n - 1 )); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approach # Function to return the maximum profit # that can be made after buying and # selling the given stocks def maxProfit(price, start, end): # If the stocks can't be bought if (end < = start): return 0 # Initialise the profit profit = 0 # The day at which the stock # must be bought for i in range (start, end, 1 ): # The day at which the # stock must be sold for j in range (i + 1 , end + 1 ): # If buying the stock at ith day and # selling it at jth day is profitable if (price[j] > price[i]): # Update the current profit curr_profit = price[j] - price[i] + \ maxProfit(price, start, i - 1 ) + \ maxProfit(price, j + 1 , end) # Update the maximum profit so far profit = max (profit, curr_profit) return profit # Driver code if __name__ = = '__main__' : price = [ 100 , 180 , 260 , 310 , 40 , 535 , 695 ] n = len (price) print (maxProfit(price, 0 , n - 1 )) # This code is contributed by Rajput-Ji |
C#
// C# implementation of the approach using System; class GFG { // Function to return the maximum profit // that can be made after buying and // selling the given stocks static int maxProfit( int [] price, int start, int end) { // If the stocks can't be bought if (end <= start) return 0; // Initialise the profit int profit = 0; // The day at which the stock // must be bought for ( int i = start; i < end; i++) { // The day at which the // stock must be sold for ( int j = i + 1; j <= end; j++) { // If buying the stock at ith day and // selling it at jth day is profitable if (price[j] > price[i]) { // Update the current profit int curr_profit = price[j] - price[i] + maxProfit(price, start, i - 1) + maxProfit(price, j + 1, end); // Update the maximum profit so far profit = Math.Max(profit, curr_profit); } } } return profit; } // Driver code public static void Main(String[] args) { int [] price = { 100, 180, 260, 310, 40, 535, 695 }; int n = price.Length; Console.Write(maxProfit(price, 0, n - 1)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach // Function to return the maximum profit // that can be made after buying and // selling the given stocks function maxProfit( price, start, end) { // If the stocks can't be bought if (end <= start) return 0; // Initialise the profit let profit = 0; // The day at which the stock // must be bought for (let i = start; i < end; i++) { // The day at which the // stock must be sold for (let j = i + 1; j <= end; j++) { // If buying the stock at ith day and // selling it at jth day is profitable if (price[j] > price[i]) { // Update the current profit let curr_profit = price[j] - price[i] + maxProfit(price, start, i - 1) + maxProfit(price, j + 1, end); // Update the maximum profit so far profit = Math.max(profit, curr_profit); } } } return profit; } // Driver program let price = [ 100, 180, 260, 310, 40, 535, 695 ]; let n = price.length; document.write(maxProfit(price, 0, n - 1)); </script> |
865
Time Complexity: O(N2), Trying to buy every stock and exploring all possibilities.
Auxiliary Space: O(1)
Stock Buy Sell to Maximize Profit using Local Maximum and Local Minimum:
If we are allowed to buy and sell only once, then we can use the algorithm discussed in maximum difference between two elements. Here we are allowed to buy and sell multiple times.
Follow the steps below to solve the problem:
- Find the local minima and store it as starting index. If it does not exists, return.
- Find the local maxima. And store it as an ending index. If we reach the end, set the end as the ending index.
- Update the solution (Increment count of buy-sell pairs)
- Repeat the above steps if the end is not reached.
Below is the implementation of the above approach:
C++
// C++ Program to find best buying and selling days #include <bits/stdc++.h> using namespace std; // This function finds the buy sell // schedule for maximum profit void stockBuySell( int price[], int n) { // Prices must be given for at least two days if (n == 1) return ; // Traverse through given price array int i = 0; while (i < n - 1) { // Find Local Minima // Note that the limit is (n-2) as we are // comparing present element to the next element while ((i < n - 1) && (price[i + 1] <= price[i])) i++; // If we reached the end, break // as no further solution possible if (i == n - 1) break ; // Store the index of minima int buy = i++; // Find Local Maxima // Note that the limit is (n-1) as we are // comparing to previous element while ((i < n) && (price[i] >= price[i - 1])) i++; // Store the index of maxima int sell = i - 1; cout << "Buy on day: " << buy << "\t Sell on day: " << sell << endl; } } // Driver code int main() { // Stock prices on consecutive days int price[] = { 100, 180, 260, 310, 40, 535, 695 }; int n = sizeof (price) / sizeof (price[0]); // Function call stockBuySell(price, n); return 0; } // This is code is contributed by rathbhupendra |
C
// Program to find best buying and selling days #include <stdio.h> // solution structure struct Interval { int buy; int sell; }; // This function finds the buy sell schedule for maximum // profit void stockBuySell( int price[], int n) { // Prices must be given for at least two days if (n == 1) return ; int count = 0; // count of solution pairs // solution vector Interval sol[n / 2 + 1]; // Traverse through given price array int i = 0; while (i < n - 1) { // Find Local Minima. Note that the limit is (n-2) // as we are comparing present element to the next // element. while ((i < n - 1) && (price[i + 1] <= price[i])) i++; // If we reached the end, break as no further // solution possible if (i == n - 1) break ; // Store the index of minima sol[count].buy = i++; // Find Local Maxima. Note that the limit is (n-1) // as we are comparing to previous element while ((i < n) && (price[i] >= price[i - 1])) i++; // Store the index of maxima sol[count].sell = i - 1; // Increment count of buy/sell pairs count++; } // print solution if (count == 0) printf ( "There is no day when buying the stock will " "make profitn" ); else { for ( int i = 0; i < count; i++) printf ( "Buy on day: %dt Sell on day: %dn" , sol[i].buy, sol[i].sell); } return ; } // Driver program to test above functions int main() { // stock prices on consecutive days int price[] = { 100, 180, 260, 310, 40, 535, 695 }; int n = sizeof (price) / sizeof (price[0]); // function call stockBuySell(price, n); return 0; } |
Java
// Program to find best buying and selling days import java.util.ArrayList; // Solution structure class Interval { int buy, sell; } class StockBuySell { // This function finds the buy sell schedule for maximum // profit void stockBuySell( int price[], int n) { // Prices must be given for at least two days if (n == 1 ) return ; int count = 0 ; // solution array ArrayList<Interval> sol = new ArrayList<Interval>(); // Traverse through given price array int i = 0 ; while (i < n - 1 ) { // Find Local Minima. Note that the limit is // (n-2) as we are comparing present element to // the next element. while ((i < n - 1 ) && (price[i + 1 ] <= price[i])) i++; // If we reached the end, break as no further // solution possible if (i == n - 1 ) break ; Interval e = new Interval(); e.buy = i++; // Store the index of minima // Find Local Maxima. Note that the limit is // (n-1) as we are comparing to previous element while ((i < n) && (price[i] >= price[i - 1 ])) i++; // Store the index of maxima e.sell = i - 1 ; sol.add(e); // Increment number of buy/sell count++; } // print solution if (count == 0 ) System.out.println( "There is no day when buying the stock " + "will make profit" ); else for ( int j = 0 ; j < count; j++) System.out.println( "Buy on day: " + sol.get(j).buy + " " + "Sell on day : " + sol.get(j).sell); return ; } public static void main(String args[]) { StockBuySell stock = new StockBuySell(); // stock prices on consecutive days int price[] = { 100 , 180 , 260 , 310 , 40 , 535 , 695 }; int n = price.length; // function call stock.stockBuySell(price, n); } } // This code has been contributed by Mayank Jaiswal |
Python3
# Python3 Program to find # best buying and selling days # This function finds the buy sell # schedule for maximum profit def stockBuySell(price, n): # Prices must be given for at least two days if (n = = 1 ): return # Traverse through given price array i = 0 while (i < (n - 1 )): # Find Local Minima # Note that the limit is (n-2) as we are # comparing present element to the next element while ((i < (n - 1 )) and (price[i + 1 ] < = price[i])): i + = 1 # If we reached the end, break # as no further solution possible if (i = = n - 1 ): break # Store the index of minima buy = i i + = 1 # Find Local Maxima # Note that the limit is (n-1) as we are # comparing to previous element while ((i < n) and (price[i] > = price[i - 1 ])): i + = 1 # Store the index of maxima sell = i - 1 print ( "Buy on day: " , buy, "\t" , "Sell on day: " , sell) # Driver code # Stock prices on consecutive days price = [ 100 , 180 , 260 , 310 , 40 , 535 , 695 ] n = len (price) # Function call stockBuySell(price, n) # This is code contributed by SHUBHAMSINGH10 |
C#
// C# program to find best buying and selling days using System; using System.Collections.Generic; // Solution structure class Interval { public int buy, sell; } public class StockBuySell { // This function finds the buy sell // schedule for maximum profit void stockBuySell( int [] price, int n) { // Prices must be given for at least two days if (n == 1) return ; int count = 0; // solution array List<Interval> sol = new List<Interval>(); // Traverse through given price array int i = 0; while (i < n - 1) { // Find Local Minima. Note that // the limit is (n-2) as we are // comparing present element // to the next element. while ((i < n - 1) && (price[i + 1] <= price[i])) i++; // If we reached the end, break // as no further solution possible if (i == n - 1) break ; Interval e = new Interval(); e.buy = i++; // Store the index of minima // Find Local Maxima. Note that // the limit is (n-1) as we are // comparing to previous element while ((i < n) && (price[i] >= price[i - 1])) i++; // Store the index of maxima e.sell = i - 1; sol.Add(e); // Increment number of buy/sell count++; } // print solution if (count == 0) Console.WriteLine( "There is no day when buying the stock " + "will make profit" ); else for ( int j = 0; j < count; j++) Console.WriteLine( "Buy on day: " + sol[j].buy + " " + "Sell on day : " + sol[j].sell); return ; } // Driver code public static void Main(String[] args) { StockBuySell stock = new StockBuySell(); // stock prices on consecutive days int [] price = { 100, 180, 260, 310, 40, 535, 695 }; int n = price.Length; // function call stock.stockBuySell(price, n); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // JavaScript program for the above approach // This function finds the buy sell // schedule for maximum profit function stockBuySell(price, n) { // Prices must be given for at least two days if (n == 1) return ; // Traverse through given price array let i = 0; while (i < n - 1) { // Find Local Minima // Note that the limit is (n-2) as we are // comparing present element to the next element while ((i < n - 1) && (price[i + 1] <= price[i])) i++; // If we reached the end, break // as no further solution possible if (i == n - 1) break ; // Store the index of minima let buy = i++; // Find Local Maxima // Note that the limit is (n-1) as we are // comparing to previous element while ((i < n) && (price[i] >= price[i - 1])) i++; // Store the index of maxima let sell = i - 1; document.write(`Buy on day: ${buy} Sell on day: ${sell}<br>`); } } // Driver code // Stock prices on consecutive days let price = [100, 180, 260, 310, 40, 535, 695]; let n = price.length; // Function call stockBuySell(price, n); // This code is contributed by Potta Lokesh </script> |
Buy on day: 0 Sell on day: 3 Buy on day: 4 Sell on day: 6
Time Complexity: O(N), The outer loop runs till I become n-1. The inner two loops increment the value of I in every iteration.
Auxiliary Space: O(1)
Stock Buy Sell to Maximize Profit using Valley Peak Approach:
In this approach, we just need to find the next greater element and subtract it from the current element so that the difference keeps increasing until we reach a minimum. If the sequence is a decreasing sequence, so the maximum profit possible is 0.
Follow the steps below to solve the problem:
- maxProfit = 0
- if price[i] > price[i – 1]
- maxProfit = maxProfit + price[i] – price[i – 1]
Below is the implementation of the above approach:
C++
#include <iostream> using namespace std; // Preprocessing helps the code run faster #define fl(i, a, b) for (int i = a; i < b; i++) // Function that return int maxProfit( int * prices, int size) { // maxProfit adds up the difference between // adjacent elements if they are in increasing order int maxProfit = 0; // The loop starts from 1 // as its comparing with the previous fl(i, 1, size) if (prices[i] > prices[i - 1]) maxProfit += prices[i] - prices[i - 1]; return maxProfit; } // Driver Function int main() { int prices[] = { 100, 180, 260, 310, 40, 535, 695 }; int N = sizeof (prices) / sizeof (prices[0]); cout << maxProfit(prices, N) << endl; return 0; } // This code is contributed by Kingshuk Deb |
C
// Importing the required header files #include <stdio.h> // Creating MACRO for finding the maximum number #define max(x, y) (((x) > (y)) ? (x) : (y)) // Creating MACRO for finding the minimum number #define min(x, y) (((x) < (y)) ? (x) : (y)) // Function that return int maxProfit( int prices[], int size) { // maxProfit adds up the difference between // adjacent elements if they are in increasing order int ans = 0; // The loop starts from 1 // as its comparing with the previous for ( int i = 1; i < size; i++) { // If the current element is greater than the // previous then the difference is added to the // answer if (prices[i] > prices[i - 1]) ans += prices[i] - prices[i - 1]; } return ans; } // Driver Code int main() { int price[] = { 100, 180, 260, 310, 40, 535, 695 }; int n = sizeof (price) / sizeof (price[0]); printf ( "%d" , maxProfit(price, n)); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { static int maxProfit( int prices[], int size) { // maxProfit adds up the difference between // adjacent elements if they are in increasing order int maxProfit = 0 ; // The loop starts from 1 // as its comparing with the previous for ( int i = 1 ; i < size; i++) if (prices[i] > prices[i - 1 ]) maxProfit += prices[i] - prices[i - 1 ]; return maxProfit; } // Driver code public static void main(String[] args) { // stock prices on consecutive days int price[] = { 100 , 180 , 260 , 310 , 40 , 535 , 695 }; int n = price.length; // function call System.out.println(maxProfit(price, n)); } } // This code is contributed by rajsanghavi9. |
Python3
# Python3 program for the above approach def max_profit(prices: list , days: int ) - > int : profit = 0 for i in range ( 1 , days): # checks if elements are adjacent and in increasing order if prices[i] > prices[i - 1 ]: # difference added to 'profit' profit + = prices[i] - prices[i - 1 ] return profit # Driver Code if __name__ = = '__main__' : # stock prices on consecutive days prices = [ 100 , 180 , 260 , 310 , 40 , 535 , 695 ] # function call profit = max_profit(prices, len (prices)) print (profit) # This code is contributed by vishvofficial. |
C#
// C# program for the above approach using System; class GFG { static int maxProfit( int [] prices, int size) { // maxProfit adds up the difference // between adjacent elements if they // are in increasing order int maxProfit = 0; // The loop starts from 1 as its // comparing with the previous for ( int i = 1; i < size; i++) if (prices[i] > prices[i - 1]) maxProfit += prices[i] - prices[i - 1]; return maxProfit; } // Driver code public static void Main( string [] args) { // Stock prices on consecutive days int [] price = { 100, 180, 260, 310, 40, 535, 695 }; int n = price.Length; // Function call Console.WriteLine(maxProfit(price, n)); } } // This code is contributed by ukasp |
Javascript
<script> // javascript program for the above approach function maxProfit(prices , size) { // maxProfit adds up the difference between // adjacent elements if they are in increasing order var maxProfit = 0; // The loop starts from 1 // as its comparing with the previous for (i = 1; i < size; i++) if (prices[i] > prices[i - 1]) maxProfit += prices[i] - prices[i - 1]; return maxProfit; } // Driver code // stock prices on consecutive days var price = [ 100, 180, 260, 310, 40, 535, 695 ]; var n = price.length; // function call document.write(maxProfit(price, n)); // This code is contributed by umadevi9616 </script> |
865
Time Complexity: O(N), Traversing over the array of size N.
Auxiliary Space: O(1)
Please Login to comment...