# Sort the given Matrix | Memory Efficient Approach

Given a matrix of N rows and M columns, the task is to sort the matrix in the strict order that is every row is sorted in increasing order and the first element of every row is greater than the first element of the previous row.

Examples:

```Input: M[][] = { {5, 4, 7},
{1, 3, 8},
{2, 9, 6} }
Output: 1 2 3
4 5 6
7 8 9
Explanation:
Please refer above image

Input: M[][] = { {5, 4, 7},
{1, 3, 8} }
Output: 1 3 4
5 7 8```

Approach: The idea is to treat the 2D-Array as a 1D-Array to sort the matrix without using extra space. This can also be explained with the help of the following example.

For Example:

```There is a 2*2 Matrix with 4 elements,
The idea is to treat the elements of the matrix
as 1D Array of 4 elements.
1 2
3 4

As In the given matrix each element can be accessed as -
1st Element - 0th Row, 0th Col
2nd Element - 0th Row, 1st Col
3rd Element - 1st Row, 0th Col
4th Element - 1st Row, 1st Col ```

So, for Accessing ith element of the matrix, the relation can be defined as:

Ith Element of the Matrix = Mat[ i / cols ][ i % cols ]

Algorithm:

• Find the number of rows(say rows) and columns(say cols) in the matrix by finding the length of the number of rows in the 2D-Array and the elements in each row in the Array.
• Iterate over each element of the matrix from 0 to the number of elements (rows * cols).
• Find the appropriate position of the element in the matrix using the above formulae for each element.
• Compare each element with the next element (For the last element in the row, the next element will be the next row first element) in the matrix, and if the next element is, less then swap these elements.

Illustration with Example:

Below is the implementation of the above approach:

## C++

 `// C++ implementation to sort ` `// the given matrix in strict order  ` `#include   ` `using` `namespace` `std;  ` `#define N 3  ` `#define M 3  ` ` `  `// Function to sort the matrix ` `void` `sortMat(``int` `data[N][M], ``int` `row, ``int` `col) ` `{ ` ` `  `    ``// Number of elements in matrix ` `    ``int` `size = row * col; ` ` `  `    ``// Loop to sort the matrix ` `    ``// using Bubble Sort ` `    ``for` `(``int` `i = 0; i < size; i++) ` `    ``{ ` `        ``for` `(``int` `j = 0; j < size - 1; j++)  ` `        ``{ ` ` `  `            ``// Condition to check ` `            ``// if the Adjacent elements ` `            ``if` `(data[j / col][j % col] > data[(j + 1)  ` `                ``/ col][(j + 1) % col]) ` `            ``{ ` ` `  `                ``// Swap if previous value is greater ` `                ``int` `temp = data[j / col][j % col]; ` `                ``data[j / col][j % col] = data[(j + 1)  ` `                    ``/ col][(j + 1) % col]; ` `                ``data[(j + 1) / col][(j + 1) % col] = temp; ` `            ``} ` `        ``} ` `    ``} ` `} ` ` `  `void` `printMat(``int` `mat[N][M], ``int` `row, ``int` `col) ` `{ ` ` `  `    ``// Loop to print the matrix ` `    ``for` `(``int` `i = 0; i < row; i++)  ` `    ``{ ` `        ``for` `(``int` `j = 0; j < col; j++) ` `        ``{ ` `            ``cout << mat[i][j] << ``" "``; ` `        ``} ` `        ``cout << endl; ` `    ``} ` `} ` ` `  `// Driver Code  ` `int` `main()  ` `{  ` `    ``int` `mat[N][M] = { { 5, 4, 7 },  ` `                        ``{ 1, 3, 8 }, ` `                        ``{ 2, 9, 6 } }; ` `         `  `    ``int` `row = N; ` `    ``int` `col = M; ` ` `  `    ``// Function call to sort ` `    ``sortMat(mat, row, col); ` ` `  `    ``// Function call to ` `    ``// print matrix ` `    ``printMat(mat, row, col); ` `    ``return` `0;  ` `}  ` ` `  `// This code is contributed by 29AjayKumar `

## Java

 `// Java implementation to sort ` `// the given matrix in strict order ` `class` `GFG  ` `{ ` `    ``// Function to sort the matrix ` `    ``static` `void` `sortMat(``int``[][] data, ``int` `row, ``int` `col) ` `    ``{ ` ` `  `        ``// Number of elements in matrix ` `        ``int` `size = row * col; ` ` `  `        ``// Loop to sort the matrix ` `        ``// using Bubble Sort ` `        ``for` `(``int` `i = ``0``; i < size; i++) ` `        ``{ ` `            ``for` `(``int` `j = ``0``; j < size - ``1``; j++)  ` `            ``{ ` ` `  `                ``// Condition to check ` `                ``// if the Adjacent elements ` `                ``if` `(data[j / col][j % col] > data[(j + ``1``)  ` `                    ``/ col][(j + ``1``) % col]) ` `                ``{ ` ` `  `                    ``// Swap if previous value is greater ` `                    ``int` `temp = data[j / col][j % col]; ` `                    ``data[j / col][j % col] = data[(j + ``1``)  ` `                        ``/ col][(j + ``1``) % col]; ` `                    ``data[(j + ``1``) / col][(j + ``1``) % col] = temp; ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``static` `void` `printMat(``int``[][] mat, ``int` `row, ``int` `col) ` `    ``{ ` ` `  `        ``// Loop to print the matrix ` `        ``for` `(``int` `i = ``0``; i < row; i++)  ` `        ``{ ` `            ``for` `(``int` `j = ``0``; j < col; j++) ` `            ``{ ` `                ``System.out.print(mat[i][j] + ``" "``); ` `            ``} ` `            ``System.out.println(); ` `        ``} ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `         `  `        ``int``[][] mat = { { ``5``, ``4``, ``7` `},  ` `                        ``{ ``1``, ``3``, ``8` `}, ` `                        ``{ ``2``, ``9``, ``6` `} }; ` `         `  `        ``int` `row = mat.length; ` `        ``int` `col = mat[``0``].length; ` ` `  `        ``// Function call to sort ` `        ``sortMat(mat, row, col); ` ` `  `        ``// Function call to ` `        ``// print matrix ` `        ``printMat(mat, row, col); ` `    ``} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

## Python3

 `# Python3 implementation to sort ` `# the given matrix in strict order ` ` `  `# Function to sort the matrix ` `def` `sortMat(data, row, col): ` `     `  `    ``# Number of elements in matrix ` `    ``size ``=` `row ``*` `col ` `     `  `    ``# Loop to sort the matrix  ` `    ``# using Bubble Sort ` `    ``for` `i ``in` `range``(``0``, size): ` `        ``for` `j ``in` `range``(``0``, size``-``1``): ` `             `  `            ``# Condition to check ` `            ``# if the Adjacent elements ` `            ``if` `( data[j``/``/``col][j ``%` `col] >\ ` `                ``data[(j ``+` `1``)``/``/``col][(j ``+` `1``)``%` `col] ): ` `                 `  `                ``# Swap if previous value is greater ` `                ``temp ``=` `data[j``/``/``col][j ``%` `col] ` `                ``data[j``/``/``col][j ``%` `col] ``=``\ ` `                    ``data[(j ``+` `1``)``/``/``col][(j ``+` `1``)``%` `col] ` `                ``data[(j ``+` `1``)``/``/``col][(j ``+` `1``)``%` `col] ``=``\ ` `                                 ``temp ` ` `  `def` `printMat(mat, row, col): ` `     `  `    ``# Loop to print the matrix ` `    ``for` `i ``in` `range``(row): ` `        ``for` `j ``in` `range``(col): ` `            ``print``(mat[i][j], end ``=``" "``) ` `        ``print``() ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `    ``mat ``=` `[ [``5``, ``4``, ``7``], ` `            ``[``1``, ``3``, ``8``], ` `            ``[``2``, ``9``, ``6``] ] ` `    ``row ``=` `len``(mat)  ` `    ``col ``=` `len``(mat[``0``]) ` `     `  `    ``# Function call to sort ` `    ``sortMat(mat, row, col) ` `     `  `    ``# Function call to ` `    ``# print matrix ` `    ``printMat(mat, row, col) `

## C#

 `// C# implementation to sort ` `// the given matrix in strict order ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `    ``// Function to sort the matrix ` `    ``static` `void` `sortMat(``int``[,] data, ``int` `row, ``int` `col) ` `    ``{ ` `  `  `        ``// Number of elements in matrix ` `        ``int` `size = row * col; ` `  `  `        ``// Loop to sort the matrix ` `        ``// using Bubble Sort ` `        ``for` `(``int` `i = 0; i < size; i++) ` `        ``{ ` `            ``for` `(``int` `j = 0; j < size - 1; j++)  ` `            ``{ ` `  `  `                ``// Condition to check ` `                ``// if the Adjacent elements ` `                ``if` `(data[j / col,j % col] > data[(j + 1)  ` `                    ``/ col,(j + 1) % col]) ` `                ``{ ` `  `  `                    ``// Swap if previous value is greater ` `                    ``int` `temp = data[j / col,j % col]; ` `                    ``data[j / col,j % col] = data[(j + 1)  ` `                        ``/ col,(j + 1) % col]; ` `                    ``data[(j + 1) / col,(j + 1) % col] = temp; ` `                ``} ` `            ``} ` `        ``} ` `    ``} ` `  `  `    ``static` `void` `printMat(``int``[,] mat, ``int` `row, ``int` `col) ` `    ``{ ` `  `  `        ``// Loop to print the matrix ` `        ``for` `(``int` `i = 0; i < row; i++)  ` `        ``{ ` `            ``for` `(``int` `j = 0; j < col; j++) ` `            ``{ ` `                ``Console.Write(mat[i,j] + ``" "``); ` `            ``} ` `            ``Console.WriteLine(); ` `        ``} ` `    ``} ` `  `  `    ``// Driver Code ` `    ``public` `static` `void` `Main(String[] args) ` `    ``{ ` `          `  `        ``int``[,] mat = { { 5, 4, 7 },  ` `                        ``{ 1, 3, 8 }, ` `                        ``{ 2, 9, 6 } }; ` `          `  `        ``int` `row = mat.GetLength(0); ` `        ``int` `col = mat.GetLength(1); ` `  `  `        ``// Function call to sort ` `        ``sortMat(mat, row, col); ` `  `  `        ``// Function call to ` `        ``// print matrix ` `        ``printMat(mat, row, col); ` `    ``} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Javascript

 ``

Output:

```1 2 3
4 5 6
7 8 9```

Performance Analysis:

• Time Complexity: In the given approach, we are sorting the elements in the matrix by considering the elements in the 1D-Array using Bubble sort, so the overall complexity will be O(N * M>)
• Space Complexity: In the given approach, no extra space is used, so the overall space complexity will be O(1)

Similar Reads
Related Tutorials