Related Articles
Smallest Derangement of Sequence
• Difficulty Level : Medium
• Last Updated : 15 Jan, 2021

Given the sequence

find the lexicographically smallest (earliest in dictionary order) derangement of

A derangement of S is as any permutation of S such that no two elements in S and its permutation occur at same position.

Examples:

```Input: 3
Output : 2 3 1
Explanation: The Sequence is 1 2 3.
Possible permutations are (1, 2, 3), (1, 3, 2),
(2, 1, 3), (2, 3, 1), (3, 1, 2) (3, 2, 1).
Derangements are (2, 3, 1), (3, 1, 2).
Smallest Derangement: (2, 3, 1)

Input : 5
Output : 2 1 4 5 3.
Explanation: Out of all the permutations of
(1, 2, 3, 4, 5), (2, 1, 4, 5, 3) is the first derangement.```

Method 1:
Using a min heap we can successively get the least element and place them in more significant positions, taking care that the property of derangement is maintained.

Complexity: O(N * log N)

Below is the implementation of the above approach.

## C++

 `// C++ program to generate smallest derangement``// using priority queue.``#include ``using` `namespace` `std;` `void` `generate_derangement(``int` `N)``{``    ``// Generate Sequence and insert into a``    ``// priority queue.``    ``int` `S[N + 1];``    ``priority_queue<``int``, vector<``int``>, greater<``int``> > PQ;``    ``for` `(``int` `i = 1; i <= N; i++) {``        ``S[i] = i;``        ``PQ.push(S[i]);``    ``}` `    ``// Generate Least Derangement``    ``int` `D[N + 1];``    ``for` `(``int` `i = 1; i <= N; i++) {``        ``int` `d = PQ.top();``        ``PQ.pop();``        ``if` `(d != S[i] || i == N) {``            ``D[i] = d;``        ``}``        ``else` `{``            ``D[i] = PQ.top();``            ``PQ.pop();``            ``PQ.push(d);``        ``}``    ``}` `    ``if` `(D[N] == S[N])``       ``swap(D[N-1], D[N]);` `    ``// Print Derangement``    ``for` `(``int` `i = 1; i <= N; i++)``        ``printf``(``"%d "``, D[i]);   ``    ``printf``(``"\n"``);``}` `// Driver code``int` `main()``{``    ``generate_derangement(10);``    ``return` `0;``}`

## Java

 `// Java program to generate``// smallest derangement``// using priority queue.``import` `java.util.*;``class` `GFG{` `static` `void` `generate_derangement(``int` `N)``{``  ``// Generate Sequence and insert``  ``// into a priority queue.``  ``int` `[]S = ``new` `int``[N + ``1``];``  ` `  ``PriorityQueue PQ =``                ``new` `PriorityQueue <>();``  ` `  ``for` `(``int` `i = ``1``; i <= N; i++)``  ``{``    ``S[i] = i;``    ``PQ.add(S[i]);``  ``}` `  ``// Generate Least Derangement``  ``int` `[]D = ``new` `int``[N + ``1``];``  ` `  ``for` `(``int` `i = ``1``; i <= N; i++)``  ``{``    ``int` `d = PQ.peek();``    ``PQ.remove();``    ``if` `(d != S[i] || i == N)``    ``{``      ``D[i] = d;``    ``}``    ``else``    ``{``      ``D[i] = PQ.peek();``      ``PQ.remove();``      ``PQ.add(d);``    ``}``  ``}` `  ``if` `(D[N] == S[N])``  ``{``    ``int` `t = D[N - ``1``];``    ``D[N - ``1``] = D[N];``    ``D[N] = t;``  ``}` `  ``// Print Derangement``  ``for` `(``int` `i = ``1``; i <= N; i++)``    ``System.out.printf(``"%d "``, D[i]);   ``  ``System.out.printf(``"\n"``);``}` `// Driver code``public` `static` `void` `main(String[] args)``{``  ``generate_derangement(``10``);``}``}` `// This code is contributed by Amit Katiyar`

## Python3

 `# Python3 program to generate``# smallest derangement``# using priority queue.``def` `generate_derangement(N) :``    ` `    ``# Generate Sequence and insert``    ``# into a priority queue.``    ``S ``=` `[i ``for` `i ``in` `range``(N ``+` `1``)]   ``    ``PQ ``=` `[]   ``    ``for` `i ``in` `range``(``1``, N ``+` `1``) :      ``        ``PQ.append(S[i])``        ` `    ``# Generate Least Derangement``    ``D ``=` `[``0``] ``*` `(N ``+` `1``)   ``    ``PQ.sort()  ``    ``for` `i ``in` `range``(``1``, N ``+` `1``) :     ``        ``PQ.sort()     ``        ``d ``=` `PQ[``0``]``        ``del` `PQ[``0``]    ``        ``if` `(d !``=` `S[i]) ``or` `(i ``=``=` `N) :        ``            ``D[i] ``=` `d         ``        ``else` `:        ``            ``PQ.sort()``            ``D[i] ``=` `PQ[``0``]``            ``del` `PQ[``0``]``            ``PQ.append(d)           ``    ``if` `D[N] ``=``=` `S[N] :       ``        ``t ``=` `D[N ``-` `1``]``        ``D[N ``-` `1``] ``=` `D[N]``        ``D[N] ``=` `t``        ` `    ``# Print Derangement``    ``for` `i ``in` `range``(``1``, N ``+` `1``) :``        ``print``(D[i], end ``=` `" "``)       ``    ``print``()``    ` `generate_derangement(``10``)` `# This code is contributed by divyeshrabadiya07`

## C#

 `// C# program to generate``// smallest derangement``// using priority queue.``using` `System;``using` `System.Collections.Generic;` `class` `GFG{` `static` `void` `generate_derangement(``int` `N)``{``  ` `  ``// Generate Sequence and insert``  ``// into a priority queue.``  ``int` `[]S = ``new` `int``[N + 1];``  ` `  ``List<``int``> PQ = ``new` `List <``int``>();``  ` `  ``for``(``int` `i = 1; i <= N; i++)``  ``{``    ``S[i] = i;``    ``PQ.Add(S[i]);``  ``}` `  ``// Generate Least Derangement``  ``int` `[]D = ``new` `int``[N + 1];``  ``PQ.Sort();``  ``for``(``int` `i = 1; i <= N; i++)``  ``{``    ``PQ.Sort();``    ` `    ``int` `d = PQ[0];``    ``PQ.RemoveAt(0);``    ` `    ``if` `(d != S[i] || i == N)``    ``{``      ``D[i] = d;``    ``}``    ``else``    ``{``      ``PQ.Sort();``      ``D[i] = PQ[0];``      ``PQ.RemoveAt(0);``      ``PQ.Add(d);``    ``}``  ``}` `  ``if` `(D[N] == S[N])``  ``{``    ``int` `t = D[N - 1];``    ``D[N - 1] = D[N];``    ``D[N] = t;``  ``}` `  ``// Print Derangement``  ``for``(``int` `i = 1; i <= N; i++)``    ``Console.Write(D[i] + ``" "``); ``  ` `  ``Console.Write(``"\n"``);``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``  ``generate_derangement(10);``}``}` `// This code is contributed by Amit Katiyar`

Output:

`2 1 4 3 6 5 8 7 10 9 `

Method 2
Since we are given a very specific sequence i.e

We can calculate the answer even more efficiently.
Divide the original sequence into pairs of two elements, and then swap the elements of each pair.
If N is odd then the last pair needs to be swapped again.

Pictorial Representation

Complexity: We perform at most N/2 + 1 swaps, so the complexity is O(N).

Why does this method work
This method is a very specific application of method 1 and is based on observation. Given the nature of the sequence, at position i we already know the least element that can be put, which is either i+1 or i-1. Since we are already given the least permutation of S it is clear that the derangement must start from 2 and not 1 ie of the form i+1 (i = 1). The next element will be of form i – 1 . The element after this will be i + 1 and then next i – 1. This pattern will continue until the end.
This operation is most easily understood as the swapping of adjacent elements of pairs of elements of S.
If we can determine the least element in constant time, then the complexity overhead from the heap is eliminated. Hence, from O(N * log N) the complexity reduces to O(N).

Below is the implementation of the above approach:

## C++

 `// Efficient C++ program to find smallest``// derangement.``#include ` `void` `generate_derangement(``int` `N)``{       ``    ``// Generate Sequence S``    ``int` `S[N + 1];``    ``for` `(``int` `i = 1; i <= N; i++)``        ``S[i] = i;` `    ``// Generate Derangement``    ``int` `D[N + 1];``    ``for` `(``int` `i = 1; i <= N; i += 2) {``        ``if` `(i == N && i%N!=0) {` `            ``// Only if i is odd``            ``// Swap D[N-1] and D[N]``            ``int` `temp=D[N]``            ``D[N] = D[N - 1];``            ``D[N - 1] = temp;``        ``}``        ``else` `{``            ``D[i] = i + 1;``            ``D[i + 1] = i;``        ``}``    ``}` `    ``// Print Derangement``    ``for` `(``int` `i = 1; i <= N; i++)``        ``printf``(``"%d "``, D[i]);   ``    ``printf``(``"\n"``);``}` `// Driver Program``int` `main()``{``    ``generate_derangement(10);``    ``return` `0;``}`

## Java

 `// Efficient Java program to find``// smallest derangement.``class` `GFG``{``    ` `static` `void` `generate_derangement(``int` `N)``{``    ``// Generate Sequence S``    ``int` `S[] = ``new` `int``[N + ``1``];``    ``for` `(``int` `i = ``1``; i <= N; i++)``        ``S[i] = i;` `    ``// Generate Derangement``    ``int` `D[] = ``new` `int``[N + ``1``];``    ``for` `(``int` `i = ``1``; i <= N; i += ``2``)``    ``{``        ``if` `(i == N)``        ``{` `            ``// Only if i is odd``            ``// Swap S[N-1] and S[N]``            ``D[N] = S[N - ``1``];``            ``D[N - ``1``] = S[N];``        ``}``        ``else``        ``{``            ``D[i] = i + ``1``;``            ``D[i + ``1``] = i;``        ``}``    ``}` `    ``// Print Derangement``    ``for` `(``int` `i = ``1``; i <= N; i++)``        ``System.out.print(D[i] + ``" "``);``    ``System.out.println();``}` `// Driver Program``public` `static` `void` `main(String[] args)``{``    ``generate_derangement(``10``);``}``}` `// This code is contributed by Arnab Kundu`

## Python3

 `# Efficient Python3 program to find``# smallest derangement.` `def` `generate_derangement(N):``    ` `    ``# Generate Sequence S``    ``S ``=` `[``0``] ``*` `(N ``+` `1``)``    ``for` `i ``in` `range``(``1``, N ``+` `1``):``        ``S[i] ``=` `i` `    ``# Generate Derangement``    ``D ``=` `[``0``] ``*` `(N ``+` `1``)``    ``for` `i ``in` `range``(``1``, N ``+` `1``, ``2``):``        ``if` `i ``=``=` `N:` `            ``# Only if i is odd``            ``# Swap S[N-1] and S[N]``            ``D[N] ``=` `S[N ``-` `1``]``            ``D[N ``-` `1``] ``=` `S[N]``        ``else``:``            ``D[i] ``=` `i ``+` `1``            ``D[i ``+` `1``] ``=` `i` `    ``# Print Derangement``    ``for` `i ``in` `range``(``1``, N ``+` `1``):``        ``print``(D[i], end ``=` `" "``)``    ``print``()` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``generate_derangement(``10``)``    ` `# This code is contributed by PranchalK`

## C#

 `// Efficient C# program to find``// smallest derangement.``using` `System;` `class` `GFG``{``    ` `static` `void` `generate_derangement(``int` `N)``{``    ``// Generate Sequence S``    ``int``[] S = ``new` `int``[N + 1];``    ``for` `(``int` `i = 1; i <= N; i++)``        ``S[i] = i;` `    ``// Generate Derangement``    ``int``[] D = ``new` `int``[N + 1];``    ``for` `(``int` `i = 1; i <= N; i += 2)``    ``{``        ``if` `(i == N)``        ``{` `            ``// Only if i is odd``            ``// Swap S[N-1] and S[N]``            ``D[N] = S[N - 1];``            ``D[N - 1] = S[N];``        ``}``        ``else``        ``{``            ``D[i] = i + 1;``            ``D[i + 1] = i;``        ``}``    ``}` `    ``// Print Derangement``    ``for` `(``int` `i = 1; i <= N; i++)``        ``Console.Write(D[i] + ``" "``);``    ``Console.WriteLine();``}` `// Driver Program``public` `static` `void` `Main()``{``    ``generate_derangement(10);``}``}` `// This code is contributed``// by Akanksha Rai`

## PHP

 ``

Output:

`2 1 4 3 6 5 8 7 10 9 `

Note: The auxiliary space can be reduced to O(1) if we perform the swapping operations on S itself.

This article is contributed by Sayan Mahapatra. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksfor geeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.