Given two integers X and Y, the task is to find the length of the smallest sequence consisting of positive integers having sum X and product Y. If no such sequence can be generated, print -1.
Examples:
Input: X = 5, Y = 5
Output: 1
Explanation:
The smallest possible sequence having sum 5 and product 5 is {5}. Therefore, the required answer is length of the sequence(= 1).Input: X = 9, Y = 8
Output: 2
Explanation:
The smallest possible sequence is {1, 8} with sum X (= 1 + 8 = 9) and product Y(= 1 * 8 = 8).
Approach: The idea is to implement Binary Search to solve the given problem on the required size in the range [1, floor(x/e)] where e is the Euler constant.
- Initialize two variables low and high to 1 and floor(x/e) respectively.
- If X is equal to Y, then the maximum size of the sequence can always be 1. Therefore, print it.
- Otherwise, iterate until the difference between high and low exceeds 1 and calculate mid each time.
- Reset the values of high and low as per the boundary conditions at each step and print the final value of high at the end.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; #define ll long long #define pb push_back // Function for checking valid or not double temp( int n, int x) { return pow (x * 1.0 / n, n); } // Function for checking boundary // of binary search bool check( int n, int y, int x) { double v = temp(n, x); return (v >= y); } // Function to calculate the // minimum sequence size // using binary search void find( int x, int y) { // Initialize high and low int high = ( int ) floor (x / exp (1.0)); int low = 1; // Base case if (x == y) cout << 1 << endl; // Print -1 if a sequence // cannot be generated else if (!check(high, y, x)) cout << -1 << endl; // Otherwise else { // Iterate until difference // between high and low exceeds 1 while (high - low > 1) { // Calculate mid int mid = (high + low) / 2; // Reset values of high // and low accordingly if (check(mid, y, x)) high = mid; else low = mid; } // Print the answer cout << high << endl; } } // Driver Code int main() { int x = 9, y = 8; // Function call find(x, y); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function for checking valid or not static double temp( int n, int x) { return Math.pow(x * 1.0 / n, n); } // Function for checking boundary // of binary search static boolean check( int n, int y, int x) { double v = temp(n, x); return (v >= y); } // Function to calculate the // minimum sequence size // using binary search static void find( int x, int y) { // Initialize high and low int high = ( int )Math.floor(x / Math.exp( 1.0 )); int low = 1 ; // Base case if (x == y) System.out.print( 1 + "\n" ); // Print -1 if a sequence // cannot be generated else if (!check(high, y, x)) System.out.print(- 1 + "\n" ); // Otherwise else { // Iterate until difference // between high and low exceeds 1 while (high - low > 1 ) { // Calculate mid int mid = (high + low) / 2 ; // Reset values of high // and low accordingly if (check(mid, y, x)) high = mid; else low = mid; } // Print the answer System.out.print(high + "\n" ); } } // Driver Code public static void main(String[] args) { int x = 9 , y = 8 ; // Function call find(x, y); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach from math import floor, exp # Function for checking valid or not def temp(n, x): return pow (x * 1 / n, n) # Function for checking boundary # of binary search def check(n, y, x): v = temp(n, x) return (v > = y) # Function to calculate the # minimum sequence size # using binary search def find(x, y): # Initialize high and low high = floor(x / exp( 1.0 )) low = 1 # Base case if (x = = y): print ( 1 ) # Print -1 if a sequence # cannot be generated elif ( not check(high, y, x)): print ( - 1 ) # Otherwise else : # Iterate until difference # between high and low exceeds 1 while (high - low > 1 ): # Calculate mid mid = (high + low) / / 2 # Reset values of high # and low accordingly if (check(mid, y, x)): high = mid else : low = mid # Print the answer print (high) # Driver Code if __name__ = = '__main__' : x = 9 y = 8 # Function call find(x, y) # This code is contributed by mohit kumar 29 |
C#
// C# program for // the above approach using System; class GFG{ // Function for checking // valid or not static double temp( int n, int x) { return Math.Pow(x * 1.0 / n, n); } // Function for checking // boundary of binary search static bool check( int n, int y, int x) { double v = temp(n, x); return (v >= y); } // Function to calculate the // minimum sequence size // using binary search static void find( int x, int y) { // Initialize high and low int high = ( int )Math.Floor(x / Math.Exp(1.0)); int low = 1; // Base case if (x == y) Console.Write(1 + "\n" ); // Print -1 if a sequence // cannot be generated else if (!check(high, y, x)) Console.Write(-1 + "\n" ); // Otherwise else { // Iterate until difference // between high and low exceeds 1 while (high - low > 1) { // Calculate mid int mid = (high + low) / 2; // Reset values of high // and low accordingly if (check(mid, y, x)) high = mid; else low = mid; } // Print the answer Console.Write(high + "\n" ); } } // Driver Code public static void Main(String[] args) { int x = 9, y = 8; // Function call find(x, y); } } // This code is contributed by Rajput-Ji |
2
Time Complexity: O(log2(X/e))
Auxiliary Space: O(1)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.