scipy stats.skew() | Python

scipy.stats.skew(array, axis=0, bias=True) function calculates the skewness of the data set.

skewness = 0 : normally distributed.
skewness > 0 : more weight in the left tail of the distribution.
skewness < 0 : more weight in the right tail of the distribution. 

Its formula –

Parameters :
array : Input array or object having the elements.
axis : Axis along which the skewness value is to be measured. By default axis = 0.
bias : Bool; calculations are corrected for statistical bias, if set to False.



Returns : Skewness value of the data set, along the axis.

Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Graph using numpy.linspace() 
# finding Skewness
  
from scipy.stats import skew
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 5, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '*')
  
print( '\nSkewness for data : ', skew(y1))

chevron_right


Output :



Skewness for data : 1.1108237139164436

 
Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Graph using numpy.linspace() 
# finding Skewness
  
  
from scipy.stats import skew
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 12, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nSkewness for data : ', skew(y1))

chevron_right


Output :



Skewness for data : 1.917677776148478

 
Code #3: On Random data

filter_none

edit
close

play_arrow

link
brightness_4
code

# finding Skewness
  
from scipy.stats import skew
import numpy as np 
  
# random values based on a normal distribution
x = np.random.normal(0, 2, 10000)
  
print ("X : \n", x)
  
print('\nSkewness for data : ', skew(x))

chevron_right


Output :

X : 
 [ 0.03255323 -6.18574775 -0.58430139 ...  3.22112446  1.16543279
  0.84083317]

Skewness for data :  0.03248837584866293


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.