# sciPy stats.tsem() function | Python

`scipy.stats.tsem(array, limits=None, inclusive=(True, True))` calculates the trimmed standard error of the mean of array elements along the specified axis of the array.

Its formula :-

Parameters :
array: Input array or object having the elements to calculate the trimmed standard error of the mean.
axis: Axis along which the trimmed standard error of the mean is to be computed. By default axis = 0.
limits: Lower and upper bound of the array to consider, values less than the lower limit or greater than the upper limit will be ignored. If limits is None [default], then all values are used.

Returns : Trimmed standard error of the mean of array elements based on the set parameters.

Code #1:

 `# Trimmed Standard error  ` `  `  `from` `scipy ``import` `stats ` `import` `numpy as np  ` `  `  `# array elements ranging from 0 to 19 ` `x ``=` `np.arange(``20``) ` `   `  `print``(``"Trimmed Standard error :"``, stats.tsem(x))  ` `  `  `  `  `print``(``"\nTrimmed Standard error by setting limit : "``,  ` `      ``stats.tsem(x, (``2``, ``10``))) `

Output:

```Trimmed Standard error : 1.32287565553

Trimmed Standard error by setting limit :  0.912870929175
```

Code #2: With multi-dimensional data, axis() working

 `# Trimmed Standard error  ` `  `  `from` `scipy ``import` `stats ` `import` `numpy as np  ` ` `  `arr1 ``=` `[[``1``, ``3``, ``27``],  ` `        ``[``5``, ``3``, ``18``],  ` `        ``[``17``, ``16``, ``333``],  ` `        ``[``3``, ``6``, ``82``]]  ` `  `  ` `  `# using axis = 0 ` `print``(``"\nTrimmed Standard error is with default axis = 0 : \n"``,  ` `      ``stats.tsem(arr1, axis ``=` `1``)) `

Output:

```Trimmed Standard error is with default axis = 0 :
27.1476974115
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.