Skip to content
Related Articles

Related Articles

Improve Article

sciPy stats.tstd() function | Python

  • Last Updated : 10 Feb, 2019

scipy.stats.tstd(array, limits=None, inclusive=(True, True)) calculates the trimmed standard deviation of the array elements along the specified axis of the array.

It’s formula –

Parameters :
array: Input array or object having the elements to calculate the trimmed standard deviation.
axis: Axis along which the trimmed standard deviation is to be computed. By default axis = 0.
limits: Lower and upper bound of the array to consider, values less than the lower limit or greater than the upper limit will be ignored. If limits is None [default], then all values are used.

Returns : Trimmed standard deviation of the array elements based on the set parameters.

Code #1:






# Trimmed Standard Deviation 
   
from scipy import stats
import numpy as np 
   
# array elements ranging from 0 to 19
x = np.arange(20)
    
print("Trimmed Standard Deviation :", stats.tstd(x)) 
   
   
print("\nTrimmed Standard Deviation by setting limit : "
      stats.tstd(x, (2, 10)))
Output:
Trimmed Standard Deviation : 5.9160797831

Trimmed Standard Deviation by setting limit :  2.73861278753

 
Code #2: With multi-dimensional data, axis() working




# Trimmed Standard Deviation 
   
from scipy import stats
import numpy as np 
  
arr1 = [[1, 3, 27], 
        [5, 3, 18], 
        [17, 16, 333], 
        [3, 6, 82]] 
   
  
# using axis = 0
print("Trimmed Standard Deviation is with default axis = 0 : \n"
      stats.tstd(arr1, axis = 1))
Output:
Trimmed Standard Deviation is with default axis = 0 : 
 94.0423824505

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :