sciPy stats.tmean() | Python

scipy.stats.tmean(array, limits=None, inclusive=(True, True)) calculates the trimmed mean of the array elements along the specified axis of the array.

It’s formula –

Parameters :
array: Input array or object having the elements to calculate the trimmed mean.
axis: Axis along which the trimmed mean is to be computed. By default axis = 0.
limits: Lower and upper bound of the array to consider, values less than the lower limit or greater than the upper limit will be ignored. If limits is None [default], then all values are used.



Returns : Trimmed mean of the array elements based on the set parameters.

Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Trimmed Mean 
   
from scipy import stats
import numpy as np 
   
# array elements ranging from 0 to 19
x = np.arange(20)
    
print("Trimmed Mean :", stats.tmean(x)) 
   
   
print("\nTrimmed Mean by setting limit : "
      stats.tmean(x, (2, 10)))

chevron_right


Output:

Trimmed Mean : 9.5

Trimmed Mean by setting limit :  6.0

Code #2: With multi-dimensional data, axis() working

filter_none

edit
close

play_arrow

link
brightness_4
code

# Trimmed Mean 
   
from scipy import stats
import numpy as np 
  
arr1 = [[1, 3, 27], 
        [5, 3, 18], 
        [17, 16, 333], 
        [3, 6, 82]] 
   
  
# using axis = 0
print("\nTrimmed Mean is with default axis = 0 : \n"
      stats.tmean(arr1, axis = 1))

chevron_right


Output:

Trimmed Mean is with default axis = 0 : 
 42.8333333333



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.