scipy stats.gausshyper() | Python

scipy.stats.gausshyper() is an Gauss hyper-geometric continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
-> q : lower and upper tail probability
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> a, b, c, z : shape parameters
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance,
‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).



Results : Gauss hyper-geometric continuous random variable

Code #1 : Creating Gauss hypergeometric continuous random variable

filter_none

edit
close

play_arrow

link
brightness_4
code

from scipy.stats import gausshyper  
  
numargs = gausshyper  .numargs
[a, b, c, z] = [0.7, ] * numargs
rv = gausshyper  (a, b, c, z)
  
print ("RV : \n", rv) 

chevron_right


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001E399AB5A58>

Code #2 : Gauss hypergeometric random variates and probability distribution.

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = gausshyper .rvs(a, b, c, z, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = gausshyper .pdf(a, b, c, z, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

chevron_right


Output :

Random Variates : 
 [1.45915082 0.58184603 1.91448022 1.23505789 0.9253147  0.36681062
 0.19628827 0.91795248 1.95313724 1.63728124]

Probability Distribution : 
 [0.83983413 0.82838709 0.81749232 0.80714179 0.79731436 0.78798255
 0.77911641 0.77068563 0.76266077 0.75501387]

Code #3 : Graphical Representation.

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))

chevron_right


Output :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]

Code #4 : Varying Positional Arguments

filter_none

edit
close

play_arrow

link
brightness_4
code

import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = gausshyper .pdf(x, a, z, 1, 3)
y2 = gausshyper .pdf(x, a, z, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")

chevron_right


Output :



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.