Skip to content
Related Articles

Related Articles

scipy.stats.expon() | Python
  • Last Updated : 20 Mar, 2019

scipy.stats.expon() is an exponential continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : exponential continuous random variable

Code #1 : Creating exponential continuous random variable

filter_none

edit
close

play_arrow

link
brightness_4
code

   
from scipy.stats import expon 
  
numargs = expon.numargs
[ ] = [0.6, ] * numargs
rv = expon( )
  
print ("RV : \n", rv) 

chevron_right


Output :



RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D56531CC0>

Code #2 : exponential random variates and probability distribution.

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = expon.rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = expon.pdf(quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

chevron_right


Output :

Random Variates : 
 [2.50259466e-04 4.32311862e+00 8.22833503e-01 1.63374263e+00
 4.46784023e+00 3.56781485e+00 3.95381396e+00 1.17623772e+00
 3.21834266e-02 4.14778445e+00]

Probability Distribution : 
 [0.99004983 0.89583414 0.81058425 0.73344696 0.66365025 0.60049558
 0.54335087 0.4916442  0.44485807 0.40252422]
 

Code #3 : Graphical Representation.

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))

chevron_right


Output :

Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]

Code #4 : Varying Positional Arguments

filter_none

edit
close

play_arrow

link
brightness_4
code

import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = expon.pdf(x, 2, 6)
y2 = expon.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")

chevron_right


Output :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :