Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

scipy.stats.expon() | Python

  • Last Updated : 20 Mar, 2019

scipy.stats.expon() is an exponential continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Results : exponential continuous random variable



Code #1 : Creating exponential continuous random variable




   
from scipy.stats import expon 
  
numargs = expon.numargs
[ ] = [0.6, ] * numargs
rv = expon( )
  
print ("RV : \n", rv) 

Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D56531CC0>

Code #2 : exponential random variates and probability distribution.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = expon.rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = expon.pdf(quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

Output :

Random Variates : 
 [2.50259466e-04 4.32311862e+00 8.22833503e-01 1.63374263e+00
 4.46784023e+00 3.56781485e+00 3.95381396e+00 1.17623772e+00
 3.21834266e-02 4.14778445e+00]

Probability Distribution : 
 [0.99004983 0.89583414 0.81058425 0.73344696 0.66365025 0.60049558
 0.54335087 0.4916442  0.44485807 0.40252422]
 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))

Output :

Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = expon.pdf(x, 2, 6)
y2 = expon.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")

Output :




My Personal Notes arrow_drop_up
Recommended Articles
Page :