Related Articles
Range and Update Sum Queries with Factorial
• Difficulty Level : Hard
• Last Updated : 31 Dec, 2019

Given an array arr[] of N integers and number of queries Q. The task is to answer three types of queries.

1. Update [l, r] – for every i in range [l, r] increment arr[i] by 1.
2. Update [l, val] – change the value of arr[l] to val.
3. Query [l, r] – calculate the sum of arr[i]! % 109 for all i in range [l, r] where arr[i]! is the factorial of arr[i].

Prerequisite :Binary Indexed Trees | Segment Trees

Examples:

Input: Q = 6, arr[] = { 1, 2, 1, 4, 5 }
3 1 5
1 1 3
2 2 4
3 2 4
1 2 5
3 1 5
Output:
148
50
968
1st query, the required sum is (1! + 2! + 1! + 4! + 5!) % 109 = 148
2nd query, the array becomes arr[] = { 2, 3, 2, 4, 5 }
3rd query, array becomes arr[] = { 2, 4, 2, 4, 5 }
4th query, the required sum is (4! + 2! + 4!) % 109 = 50
5th query, the array becomes arr[] = { 2, 5, 3, 5, 6 }
6th query, the required sum is (2! + 5! + 3! + 5! + 6!) % 109 = 968

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Naive Approach: A simple solution is to run a loop from l to r and calculate sum of factorial of elements (pre-computed) in the given range for the 3rd query. For the 2nd query, to update a value, simply replace arr[i] with the given value i.e. arr[i] = val. For the 1st type query, increment the value of arr[i] i.e. arr[i] = arr[i] + 1.

Efficient Approach: It can be observed from careful analysis that 40! is divisible by 109, that means factorial of every number greater than 40 will be divisible by 109. Hence, that adds zero to our answer for the 3rd query. The idea is to reduce the time complexity for each query and update operation to O(logN). Use Binary Indexed Trees (BIT) or Segment Trees. Construct a BIT[] array and have two functions for query and update operation.

• Now, for each update operation of the 1st type, the key observation is that the number in given range can at max be updated to 40, since after that it won’t matter as it will add zero to our final answer. We will use a set to store the index of only those numbers which are lesser than 10 and use binary search to find the l index of the update query and increment the l index until every element is updated in range of that update query. If the arr[i] becomes greater than or equal to 40 after incrementing by 1, remove it from the set as it will not affect our answer of sum query even after any next update query.
• For the update operation of the 2nd type, call the update function with the given value. Also, the given value is < 40, insert the index of the element to be replaced with into the set and if the given value is ≥ 40, remove it from the set since it will have no importance in sum query.
• For the sum query of the 3rd type, simply do query(r) – query(l – 1).

Below is the implementation of the above approach:

## C++

 `// CPP program to calculate sum of``// factorials in an interval and update``// with two types of operations``#include ``using` `namespace` `std;`` ` `// Modulus``const` `int` `MOD = 1e9;`` ` `// Maximum size of input array``const` `int` `MAX = 100;`` ` `// Size for factorial array``const` `int` `SZ = 40;`` ` `int` `BIT[MAX + 1], fact[SZ + 1];`` ` `// structure for queries with members type,``// leftIndex, rightIndex of the query``struct` `queries {``    ``int` `type, l, r;``};`` ` `// function for updating the value``void` `update(``int` `x, ``int` `val, ``int` `n)``{``    ``for` `(x; x <= n; x += x & -x)``        ``BIT[x] += val;``}`` ` `// function for calculating the required``// sum between two indexes``int` `sum(``int` `x)``{``    ``int` `s = 0;``    ``for` `(x; x > 0; x -= x & -x)``        ``s += BIT[x];``    ``return` `s;``}`` ` `// function to return answer to queries``void` `answerQueries(``int` `arr[], queries que[],``                   ``int` `n, ``int` `q)``{``    ``// Precomputing factorials``    ``fact = 1;``    ``for` `(``int` `i = 1; i < 41; i++)``        ``fact[i] = (fact[i - 1] * i) % MOD;`` ` `    ``// Declaring a Set``    ``set<``int``> s;``    ``for` `(``int` `i = 1; i < n; i++) {`` ` `        ``// inserting indexes of those``        ``// numbers which are lesser``        ``// than 40``        ``if` `(arr[i] < 40) {``            ``s.insert(i);``            ``update(i, fact[arr[i]], n);``        ``}``        ``else``            ``update(i, 0, n);``    ``}`` ` `    ``for` `(``int` `i = 0; i < q; i++) {`` ` `        ``// update query of the 1st type``        ``if` `(que[i].type == 1) {``            ``while` `(``true``) {`` ` `                ``// find the left index of query in``                ``// the set using binary search``                ``auto` `it = s.lower_bound(que[i].l);`` ` `                ``// if it crosses the right index of``                ``// query or end of set, then break``                ``if` `(it == s.end() || *it > que[i].r)``                    ``break``;`` ` `                ``que[i].l = *it;``                ``int` `val = arr[*it] + 1;`` ` `                ``// update the value of arr[i] to``                ``// its new value``                ``update(*it, fact[val] - fact[arr[*it]], n);`` ` `                ``arr[*it]++;`` ` `                ``// if updated value becomes greater``                ``// than or equal to 40 remove it from``                ``// the set``                ``if` `(arr[*it] >= 40)``                    ``s.erase(*it);`` ` `                ``// increment the index``                ``que[i].l++;``            ``}``        ``}`` ` `        ``// update query of the 2nd type``        ``else` `if` `(que[i].type == 2) {``            ``int` `idx = que[i].l;``            ``int` `val = que[i].r;`` ` `            ``// update the value to its new value``            ``update(idx, fact[val] - fact[arr[idx]], n);`` ` `            ``arr[idx] = val;`` ` `            ``// If the value is less than 40, insert``            ``// it into set, otherwise remove it``            ``if` `(val < 40)``                ``s.insert(idx);``            ``else``                ``s.erase(idx);``        ``}`` ` `        ``// sum query of the 3rd type``        ``else``            ``cout << (sum(que[i].r) - sum(que[i].l - 1))``                 ``<< endl;``    ``}``}`` ` `// Driver Code to test above functions``int` `main()``{``    ``int` `q = 6;`` ` `    ``// input array using 1-based indexing``    ``int` `arr[] = { 0, 1, 2, 1, 4, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);`` ` `    ``// declaring array of structure of type queries``    ``queries que[q + 1];`` ` `    ``que.type = 3, que.l = 1, que.r = 5;``    ``que.type = 1, que.l = 1, que.r = 3;``    ``que.type = 2, que.l = 2, que.r = 4;``    ``que.type = 3, que.l = 2, que.r = 4;``    ``que.type = 1, que.l = 2, que.r = 5;``    ``que.type = 3, que.l = 1, que.r = 5;`` ` `    ``// answer the Queries``    ``answerQueries(arr, que, n, q);``    ``return` `0;``}`

## Python3

 `# Python3 program to calculate sum of``# factorials in an interval and update``# with two types of operations``from` `bisect ``import` `bisect_left as lower_bound`` ` `# Modulus``MOD ``=` `1e9`` ` `# Maximum size of input array``MAX` `=` `100`` ` `# Size for factorial array``SZ ``=` `40`` ` `BIT ``=` `[``0``] ``*` `(``MAX` `+` `1``)``fact ``=` `[``0``] ``*` `(SZ ``+` `1``)`` ` `# structure for queries with members type,``# leftIndex, rightIndex of the query``class` `queries:``    ``def` `__init__(``self``, tpe, l, r):``        ``self``.``type` `=` `tpe``        ``self``.l ``=` `l``        ``self``.r ``=` `r`` ` `# function for updating the value``def` `update(x, val, n):``    ``global` `BIT``    ``while` `x <``=` `n:``        ``BIT[x] ``+``=` `val``        ``x ``+``=` `x & ``-``x`` ` `# function for calculating the required``# sum between two indexes``def` `summ(x):``    ``global` `BIT``    ``s ``=` `0``    ``while` `x > ``0``:``        ``s ``+``=` `BIT[x]``        ``x ``-``=` `x & ``-``x``    ``return` `s`` ` `# function to return answer to queries``def` `answerQueries(arr: ``list``, que: ``list``, ``                       ``n: ``int``, q: ``int``):``    ``global` `fact`` ` `    ``# Precomputing factorials``    ``fact[``0``] ``=` `1``    ``for` `i ``in` `range``(``1``, ``41``):``        ``fact[i] ``=` `int``((fact[i ``-` `1``] ``*` `i) ``%` `MOD)`` ` `    ``# Declaring a Set``    ``s ``=` `set``()``    ``for` `i ``in` `range``(``1``, n):`` ` `        ``# inserting indexes of those``        ``# numbers which are lesser``        ``# than 40``        ``if` `arr[i] < ``40``:``            ``s.add(i)``            ``update(i, fact[arr[i]], n)``        ``else``:``            ``update(i, ``0``, n)`` ` `    ``for` `i ``in` `range``(q):`` ` `        ``# update query of the 1st type``        ``if` `que[i].``type` `=``=` `1``:``            ``while` `True``:``                ``s ``=` `list``(s)``                ``s.sort()`` ` `                ``# find the left index of query in``                ``# the set using binary search``                ``it ``=` `lower_bound(s, que[i].l)`` ` `                ``# if it crosses the right index of``                ``# query or end of set, then break``                ``if` `it ``=``=` `len``(s) ``or` `s[it] > que[i].r:``                    ``break`` ` `                ``que[i].l ``=` `s[it]``                ``val ``=` `arr[s[it]] ``+` `1`` ` `                ``# update the value of arr[i] to``                ``# its new value``                ``update(s[it], fact[val] ``-` `                              ``fact[arr[s[it]]], n)`` ` `                ``arr[s[it]] ``+``=` `1`` ` `                ``# if updated value becomes greater``                ``# than or equal to 40 remove it from``                ``# the set``                ``if` `arr[s[it]] >``=` `40``:``                    ``s.remove(it)`` ` `                ``# increment the index``                ``que[i].l ``+``=` `1`` ` `        ``# update query of the 2nd type``        ``elif` `que[i].``type` `=``=` `2``:``            ``s ``=` `set``(s)``            ``idx ``=` `que[i].l``            ``val ``=` `que[i].r`` ` `            ``# update the value to its new value``            ``update(idx, fact[val] ``-` `fact[arr[idx]], n)`` ` `            ``arr[idx] ``=` `val`` ` `            ``# If the value is less than 40, insert``            ``# it into set, otherwise remove it``            ``if` `val < ``40``:``                ``s.add(idx)``            ``else``:``                ``s.remove(idx)`` ` `        ``# sum query of the 3rd type``        ``else``:``            ``print``((summ(que[i].r) ``-` `                   ``summ(que[i].l ``-` `1``)))`` ` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:`` ` `    ``q ``=` `6`` ` `    ``# input array using 1-based indexing``    ``arr ``=` `[``0``, ``1``, ``2``, ``1``, ``4``, ``5``]``    ``n ``=` `len``(arr)`` ` `    ``# declaring array of structure of type queries``    ``que ``=` `[ queries(``3``, ``1``, ``5``),``            ``queries(``1``, ``1``, ``3``),``            ``queries(``2``, ``2``, ``4``),``            ``queries(``3``, ``2``, ``4``),``            ``queries(``1``, ``2``, ``5``),``            ``queries(``3``, ``1``, ``5``) ]`` ` `    ``# answer the Queries``    ``answerQueries(arr, que, n, q)`` ` `# This code is contributed by``# sanjeev2552`
Output:
```148
50
968
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up