Open In App
Related Articles

Program to check if N is a Centered Pentagonal Number or not

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number N, the task is to check if N is a Centered Pentagonal Number or not. If the number N is a Centered Pentagonal Number then print “Yes” else print “No”.

Centered Pentagonal Number is a centered figurate number that represents a pentagon with a dot in the center and other dots surrounding it in pentagonal layers successively. The first few Centered Pentagonal Number are 1, 6, 16, 31, 51, 76, 106 … 

Examples:  

Input: N = 6 
Output: Yes 
Explanation: 
Second Centered pentagonal number is 6.

Input: N = 20 
Output: No 

Approach: 
 

1. The Kth term of the Centered Pentagonal Number is given as
K^{th} Term = \frac{5*K^{2} - 5*K + 2}{2}
 

2. As we have to check that the given number can be expressed as a Centered Pentagonal Number or not. This can be checked as:

=> N = \frac{5*K^{2} - 5*K + 2}{2}
=> K = \frac{5 + \sqrt{40*N - 15}}{10}

3. If the value of K calculated using the above formula is an integer, then N is a Centered Pentagonal Number.

4. Else the number N is not a Centered Pentagonal Number.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if number N
// is a Centered pentagonal number
bool isCenteredpentagonal(int N)
{
    float n
        = (5 + sqrt(40 * N - 15))
          / 10;
 
    // Condition to check if N is a
    // Centered pentagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 6;
 
    // Function call
    if (isCenteredpentagonal(N)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check if number N
// is a centered pentagonal number
static boolean isCenteredpentagonal(int N)
{
    float n = (float) ((5 + Math.sqrt(40 * N -
                                      15)) / 10);
 
    // Condition to check if N is a
    // centered pentagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Number
    int N = 6;
 
    // Function call
    if (isCenteredpentagonal(N))
    {
        System.out.print("Yes");
    }
    else
    {
        System.out.print("No");
    }
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program for the above approach
import numpy as np
 
# Function to check if number N
# is a centered pentagonal number
def isCenteredpentagonal(N):
 
    n = (5 + np.sqrt(40 * N - 15)) / 10
 
    # Condition to check if N is a
    # centered pentagonal number
    return (n - int(n)) == 0
 
# Driver Code
N = 6
 
# Function call
if (isCenteredpentagonal(N)):
    print ("Yes")
else:
    print ("No")
 
# This code is contributed by PratikBasu


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check if number N
// is a centered pentagonal number
static bool isCenteredpentagonal(int N)
{
    float n = (float) ((5 + Math.Sqrt(40 * N -
                                      15)) / 10);
 
    // Condition to check if N is a
    // centered pentagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given number
    int N = 6;
 
    // Function call
    if (isCenteredpentagonal(N))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
// javascript program for the above approach
 
// Function to check if number N
// is a centered pentagonal number
function isCenteredpentagonal(N)
{
    var n =  ((5 + Math.sqrt(40 * N -
                                      15)) / 10);
 
    // Condition to check if N is a
    // centered pentagonal number
    return (n - parseInt(n) == 0);
}
 
// Driver Code
//Given Number
var N = 6;
 
// Function call
if (isCenteredpentagonal(N))
{
    document.write("Yes");
}
else
{
    document.write("No");
}
 
// This code is contributed by Amit Katiyar
</script>


Output: 

Yes

 

Time Complexity: O(logN) because it is using inbuilt sqrt function
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 28 Nov, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials