# Program to check if N is a Centered Octagonal Number

Given an integer N, the task is to check if it is a Centered Octagonal number or not. If the number N is an Centered Octagonal Number then print “Yes” else print “No”.

Centered Octagonal number represents an octagon with a dot in the centre and others dots surrounding the centre dot in the successive octagonal layer.The first few Centered Octagonal numbers are 1, 9, 25, 49, 81, 121, 169, 225, 289, 361 …

Examples:

Input: N = 9
Output: Yes
Explanation:
Second Centered Octagonal number is 9.
Input: 16
Output: No

Approach:

1. The Kth term of the Centered Octagonal number is given as 2. As we have to check that the given number can be expressed as a Centered Octagonal Number or not. This can be checked as follows –

=> => 3. If the value of K calculated using the above formula is an integer, then N is a Centered Octagonal Number.

4. Else N is not a Centered Octagonal Number.

Below is the implementation of the above approach:

## C++

 // C++ program for the above approach #include    using namespace std;   // Function to check if the number N // is a Centered Octagonal number bool isCenteredOctagonal(int N) {     float n         = (1 + sqrt(N))           / 2;       // Condition to check if the number     // is a Centered Octagonal number     return (n - (int)n) == 0; }   // Driver Code int main() {     // Given Number     int N = 9;       // Function call     if (isCenteredOctagonal(N)) {         cout << "Yes";     }     else {         cout << "No";     }     return 0; }

## Java

 // Java program for the above approach import java.util.*;   class GFG{   // Function to check if the number N // is a centered octagonal number static boolean isCenteredOctagonal(int N) {     float n = (float) ((1 + Math.sqrt(N)) / 2);       // Condition to check if the number     // is a centered octagonal number     return (n - (int)n) == 0; }   // Driver Code public static void main(String[] args) {           // Given Number     int N = 9;       // Function call     if (isCenteredOctagonal(N))     {         System.out.print("Yes");     }     else     {         System.out.print("No");     } } }   // This code is contributed by sapnasingh4991

## Python3

 # Python3 program for the above approach import numpy as np   # Function to check if the number N # is a centered octagonal number def isCenteredOctagonal(N):       n = (1 + np.sqrt(N)) / 2       # Condition to check if N      # is a centered octagonal number     return (n - int(n)) == 0   # Driver Code  N = 9   # Function call  if (isCenteredOctagonal(N)):     print("Yes")  else:     print("No")   # This code is contributed by PratikBasu

## C#

 // C# program for the above approach using System;   class GFG{   // Function to check if the number N // is a centered octagonal number static bool isCenteredOctagonal(int N) {     float n = (float) ((1 + Math.Sqrt(N)) / 2);       // Condition to check if the number     // is a centered octagonal number     return (n - (int)n) == 0; }   // Driver Code public static void Main(string[] args) {           // Given Number     int N = 9;       // Function call     if (isCenteredOctagonal(N))     {         Console.Write("Yes");     }     else     {         Console.Write("No");     } } }   // This code is contributed by rutvik_56

## Javascript

 

Output:

Yes

Time Complexity: O(logN) because it is using inbuilt sqrt function

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next