Pentagonal Pyramidal Number

Given a number n, find the nth pentagonal pyramidal number.

A Pentagonal Pyramidal Number belongs to the figurate number class. It is the number of objects in a pyramid with a pentagonal base. The nth pentagonal pyramidal number is equal to sum of first n pentagonal numbers.

Examples:

Input : n = 3 
Output : 18

Input : n = 7
Output : 196

Method 1: (Naive Approach) :
This approach is simple. It says to add all the pentagonal numbers up to n (by running loop) to get nth Pentagonal pyramidal number.

Below is the implementation of this approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP Program to get nth Pentagonal
// pyramidal number.
#include <bits/stdc++.h>
using namespace std;
  
// function to get nth Pentagonal
// pyramidal number.
int pentagon_pyramidal(int n)
{
    int sum = 0;
  
    // Running loop from 1 to n
    for (int i = 1; i <= n; i++) {
  
        // get nth pentagonal number
        int p = (3 * i * i - i) / 2;
  
        // add to sum
        sum = sum + p;
    }
    return sum;
}
  
// Driver Program
int main()
{
    int n = 4;
    cout << pentagon_pyramidal(n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to get nth 
// Pentagonal pyramidal number.
import java.io.*;
  
class GFG 
{
  
// function to get nth 
// Pentagonal pyramidal number.
static int pentagon_pyramidal(int n)
{
    int sum = 0;
  
    // Running loop from 1 to n
    for (int i = 1; i <= n; i++) 
    {
  
        // get nth pentagonal number
        int p = (3 * i * i - i) / 2;
  
        // add to sum
        sum = sum + p;
    }
    return sum;
}
  
// Driver Code
public static void main (String[] args) 
{
    int n = 4;
    System.out.println(pentagon_pyramidal(n));
}
}
  
// This code is contributed by anuj_67.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to get nth Pentagonal 
# pyramidal number.
    
# function to get nth Pentagonal 
# pyramidal number.
def pentagon_pyramidal(n):
    sum = 0
  
    # Running loop from 1 to n 
    for i in range(1, n + 1):
    
        # get nth pentagonal number
        p = ( 3 * i * i - i ) / 2
  
        # add to sum
        sum = sum + p       
   
    return sum
  
    
# Driver Program
n = 4
print(int(pentagon_pyramidal(n)))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to get nth 
// Pentagonal pyramidal number.
using System;
  
class GFG
{
      
// function to get nth 
// Pentagonal pyramidal number.
static int pentagon_pyramidal(int n)
{
    int sum = 0;
  
    // Running loop from 1 to n
    for (int i = 1; i <= n; i++) 
    {
  
        // get nth pentagonal number
        int p = (3 * i * 
                 i - i) / 2;
  
        // add to sum
        sum = sum + p;
    }
    return sum;
}
  
// Driver Code
static public void Main ()
{
    int n = 4;
    Console.WriteLine(pentagon_pyramidal(n));
}
}
  
// This code is contributed by ajit.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to get nth 
// Pentagonal pyramidal number.
  
// function to get nth 
// Pentagonal pyramidal number.
function pentagon_pyramidal($n)
{
    $sum = 0;
  
    // Running loop from 1 to n
    for ($i = 1; $i <= $n; $i++)
    {
  
        // get nth pentagonal number
        $p = (3 * $i
                  $i - $i) / 2;
  
        // add to sum
        $sum = $sum + $p;
    }
    return $sum;
}
  
// Driver Code
$n = 4;
echo pentagon_pyramidal($n);
  
// This code is contributed by m_kit
?>

chevron_right



Output :

40

Time Complexity : O(n)

Method 2: (Efficient Approach) :
In this approach, we use formula to get nth Pentagonal pyramidal number in O(1) time.

nth Pentagonal pyramidal number = n2 (n + 1) / 2

Below is the implementation of this approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP Program to get nth Pentagonal
// pyramidal number.
#include <bits/stdc++.h>
using namespace std;
  
// function to get nth Pentagonal
// pyramidal number.
int pentagon_pyramidal(int n)
{
    return n * n * (n + 1) / 2;
}
  
// Driver Program
int main()
{
    int n = 4;
    cout << pentagon_pyramidal(n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to get nth 
// Pentagonal pyramidal number.
import java.io.*;
  
class GFG 
{
      
// function to get nth 
// Pentagonal pyramidal number.
static int pentagon_pyramidal(int n)
{
    return n * n * 
          (n + 1) / 2;
}
  
// Driver Code
public static void main (String[] args)
{
    int n = 4;
    System.out.println(pentagon_pyramidal(n));
}
}
  
// This code is contributed by ajit

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to get nth Pentagonal 
# pyramidal number.
    
# function to get nth Pentagonal 
# pyramidal number.
def pentagon_pyramidal(n):     
    return n * n * (n + 1) / 2
  
    
# Driver Program
n = 4
print(int(pentagon_pyramidal(n)))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to get nth 
// Pentagonal pyramidal number.
using System;
  
class GFG
{
      
// function to get nth 
// Pentagonal pyramidal number.
static int pentagon_pyramidal(int n)
{
    return n * n * 
          (n + 1) / 2;
}
  
// Driver Code
static public void Main ()
{
    int n = 4;
    Console.WriteLine(
            pentagon_pyramidal(n));
}
}
  
// This code is contributed
// by ajit

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to get 
// nth Pentagonal
// pyramidal number.
  
// function to get 
// nth Pentagonal
// pyramidal number.
  
function pentagon_pyramidal($n)
{
    return $n * $n
          ($n + 1) / 2;
}
  
// Driver Code
$n = 4;
echo pentagon_pyramidal($n);
      
// This code is contributed
// by akt_mit
?>

chevron_right



Output :

40

Time Complexity : O(1)



My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, jit_t