Open In App
Related Articles

Program to check if N is a Centered Hexadecagonal Number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number N, the task is to check if N is a Centered Hexadecagonal Number or not. If the number N is a Centered Hexadecagonal Number then print “Yes” else print “No”.

Centered Hexadecagonal Number represents a dot in the centre and other dots around it in successive Hexadecagonal(16 sided polygon) layers… The first few Centered Hexadecagonal Numbers are 1, 17, 49, 97, 161, 241 … 
 

Examples:  

Input: N = 17 
Output: Yes 
Explanation: 
Second Centered hexadecagonal number is 17.
Input: N = 20 
Output: No 

Approach:  

1. The Kth term of the Centered Hexadecagonal Number is given as
K^{th} Term = 8*K^{2} - 8*K + 1
 

2. As we have to check that the given number can be expressed as a Centered Hexadecagonal Number or not. This can be checked as: 

=> N = 8*K^{2} - 8*K + 1
=> K = \frac{8 + \sqrt{32*N + 32}}{16}

3. If the value of K calculated using the above formula is an integer, then N is a Centered Hexadecagonal Number.

4. Else the number N is not a Centered Hexadecagonal Number.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the number N
// is a Centered hexadecagonal number
bool isCenteredhexadecagonal(int N)
{
    float n
        = (8 + sqrt(32 * N + 32))
          / 16;
 
    // Condition to check if the N is a
    // Centered hexadecagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 17;
 
    // Function call
    if (isCenteredhexadecagonal(N)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG {
     
// Function to check if the number N
// is a centered hexadecagonal number
static boolean isCenteredhexadecagonal(int N)
{
    double n = (8 + Math.sqrt(32 * N + 32)) / 16;
 
    // Condition to check if the N is a
    // centered hexadecagonal number
    return (n - (int)n) == 0;
}
     
// Driver code
public static void main(String[] args)
{
     
    // Given Number
    int N = 17;
 
    // Function call
    if (isCenteredhexadecagonal(N))
    {
        System.out.println("Yes");
    }
    else
    {
        System.out.println("No");
    }
}
}
 
// This code is contributed by coder001


Python3




# Python3 program for the above approach
import numpy as np
 
# Function to check if the number N
# is a Centered hexadecagonal number
def isCenteredhexadecagonal(N):
 
    n = (8 + np.sqrt(32 * N + 32)) / 16
 
    # Condition to check if the N is a
    # Centered hexadecagonal number
    return (n - int(n)) == 0
 
# Driver Code
N = 17
 
# Function call
if (isCenteredhexadecagonal(N)):
    print ("Yes")
else:
    print ("No")
 
# This code is contributed by PratikBasu


C#




// C# program for the above approach
using System;
 
class GFG {
     
// Function to check if the number N
// is a centered hexadecagonal number
static bool isCenteredhexadecagonal(int N)
{
    double n = (8 + Math.Sqrt(32 * N + 32)) / 16;
 
    // Condition to check if the N is a
    // centered hexadecagonal number
    return (n - (int)n) == 0;
}
     
// Driver code
public static void Main(string[] args)
{
     
    // Given Number
    int N = 17;
 
    // Function call
    if (isCenteredhexadecagonal(N))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// javascript program for the above approach
 
 
// Function to check if the number N
// is a Centered hexadecagonal number
function isCenteredhexadecagonal( N)
{
    let n
        = (8 + Math.sqrt(32 * N + 32))
          / 16;
 
    // Condition to check if the N is a
    // Centered hexadecagonal number
    return (n - parseInt(n)) == 0;
}
 
// Driver Code
 
    // Given Number
    let N = 17;
 
    // Function Call
    if (isCenteredhexadecagonal(N)) {
        document.write( "Yes");
    }
    else {
        document.write( "No");
    }
 
// This code contributed by Rajput-Ji
 
</script>


Output: 

Yes

 

Time Complexity: O(logN), for using inbuilt sqrt function.
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 22 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials