Given a number N, the task is to check if N is a Centered Hexadecagonal Number or not. If the number N is a Centered Hexadecagonal Number then print “Yes” else print “No”.
Centered Hexadecagonal Number represents a dot in the centre and other dots around it in successive Hexadecagonal(16 sided polygon) layers… The first few Centered Hexadecagonal Numbers are 1, 17, 49, 97, 161, 241 …
Examples:
Input: N = 17
Output: Yes
Explanation:
Second Centered hexadecagonal number is 17.
Input: N = 20
Output: No
Approach:
1. The Kth term of the Centered Hexadecagonal Number is given as

2. As we have to check that the given number can be expressed as a Centered Hexadecagonal Number or not. This can be checked as:
=> 
=> 
3. If the value of K calculated using the above formula is an integer, then N is a Centered Hexadecagonal Number.
4. Else the number N is not a Centered Hexadecagonal Number.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
bool isCenteredhexadecagonal( int N)
{
float n
= (8 + sqrt (32 * N + 32))
/ 16;
return (n - ( int )n) == 0;
}
int main()
{
int N = 17;
if (isCenteredhexadecagonal(N)) {
cout << "Yes" ;
}
else {
cout << "No" ;
}
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
static boolean isCenteredhexadecagonal( int N)
{
double n = ( 8 + Math.sqrt( 32 * N + 32 )) / 16 ;
return (n - ( int )n) == 0 ;
}
public static void main(String[] args)
{
int N = 17 ;
if (isCenteredhexadecagonal(N))
{
System.out.println( "Yes" );
}
else
{
System.out.println( "No" );
}
}
}
|
Python3
import numpy as np
def isCenteredhexadecagonal(N):
n = ( 8 + np.sqrt( 32 * N + 32 )) / 16
return (n - int (n)) = = 0
N = 17
if (isCenteredhexadecagonal(N)):
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
class GFG {
static bool isCenteredhexadecagonal( int N)
{
double n = (8 + Math.Sqrt(32 * N + 32)) / 16;
return (n - ( int )n) == 0;
}
public static void Main( string [] args)
{
int N = 17;
if (isCenteredhexadecagonal(N))
{
Console.Write( "Yes" );
}
else
{
Console.Write( "No" );
}
}
}
|
Javascript
<script>
function isCenteredhexadecagonal( N)
{
let n
= (8 + Math.sqrt(32 * N + 32))
/ 16;
return (n - parseInt(n)) == 0;
}
let N = 17;
if (isCenteredhexadecagonal(N)) {
document.write( "Yes" );
}
else {
document.write( "No" );
}
</script>
|
Time Complexity: O(logN), for using inbuilt sqrt function.
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
22 Sep, 2022
Like Article
Save Article