Given a number N, the task is to check if N is a Dodecagonal Number or not. If the number N is a Dodecagonal Number then print “Yes” else print “No”.
dodecagonal number represent Dodecagonal(12 sides polygon).The first few dodecagonal numbers are 1, 12, 33, 64, 105, 156, 217…
Examples:
Input: N = 12
Output: Yes
Explanation:
Second dodecagonal number is 12.
Input: N = 30
Output: No
Approach:
1. The Kth term of the Dodecagonal Number is given as

2. As we have to check whether the given number can be expressed as a Dodecagonal Number or not. This can be checked as follows:
=> 
=> 
3. If the value of K calculated using the above formula is an integer, then N is a Dodecagonal Number.
4. Else the number N is not a Dodecagonal Number.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
bool isdodecagonal( int N)
{
float n
= (4 + sqrt (20 * N + 16))
/ 10;
return (n - ( int )n) == 0;
}
int main()
{
int N = 12;
if (isdodecagonal(N)) {
cout << "Yes" ;
}
else {
cout << "No" ;
}
return 0;
}
|
Java
import java.util.*;
class GFG{
static boolean isdodecagonal( int N)
{
float n = ( float ) (( 4 + Math.sqrt( 20 * N +
16 )) / 10 );
return (n - ( int )n) == 0 ;
}
public static void main(String[] args)
{
int N = 12 ;
if (isdodecagonal(N))
{
System.out.print( "Yes" );
}
else
{
System.out.print( "No" );
}
}
}
|
Python3
import numpy as np
def isdodecagonal(N):
n = ( 4 + np.sqrt( 20 * N + 16 )) / 10
return (n - int (n)) = = 0
N = 12
if (isdodecagonal(N)):
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
class GFG{
static bool isdodecagonal( int N)
{
float n = ( float ) ((4 + Math.Sqrt(20 * N +
16)) / 10);
return (n - ( int )n) == 0;
}
public static void Main( string [] args)
{
int N = 12;
if (isdodecagonal(N))
{
Console.Write( "Yes" );
}
else
{
Console.Write( "No" );
}
}
}
|
Javascript
<script>
function isdodecagonal(N)
{
let n
= (4 + Math.sqrt(20 * N + 16))
/ 10;
return (n - parseInt(n)) == 0;
}
let N = 12;
if (isdodecagonal(N))
{
document.write( "Yes" );
}
else
{
document.write( "No" );
}
</script>
|
Time Complexity: O(log N), since sqrt() function has been used
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Nov, 2022
Like Article
Save Article