Open In App
Related Articles

Program to check if N is a Dodecagonal Number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number N, the task is to check if N is a Dodecagonal Number or not. If the number N is a Dodecagonal Number then print “Yes” else print “No”.

dodecagonal number represent Dodecagonal(12 sides polygon).The first few dodecagonal numbers are 1, 12, 33, 64, 105, 156, 217… 

Examples:  

Input: N = 12 
Output: Yes 
Explanation: 
Second dodecagonal number is 12.

Input: N = 30 
Output: No

Approach: 

1. The Kth term of the Dodecagonal Number is given as
K^{th} Term = 5*K^{2} - 4*K

2. As we have to check whether the given number can be expressed as a Dodecagonal Number or not. This can be checked as follows:

=> N = 5*K^{2} - 4*K
=> K = \frac{4 + \sqrt{20*N + 16}}{10}

3. If the value of K calculated using the above formula is an integer, then N is a Dodecagonal Number.
4. Else the number N is not a Dodecagonal Number.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if number N
// is a dodecagonal number or not
bool isdodecagonal(int N)
{
    float n
        = (4 + sqrt(20 * N + 16))
          / 10;
 
    // Condition to check if the
    // N is a dodecagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 12;
 
    // Function call
    if (isdodecagonal(N)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check if number N
// is a dodecagonal number or not
static boolean isdodecagonal(int N)
{
    float n = (float) ((4 + Math.sqrt(20 * N +
                                      16)) / 10);
 
    // Condition to check if the
    // N is a dodecagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Number
    int N = 12;
 
    // Function call
    if (isdodecagonal(N))
    {
        System.out.print("Yes");
    }
    else
    {
        System.out.print("No");
    }
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program for the above approach
import numpy as np
 
# Function to check if number N
# is a dodecagonal number or not
def isdodecagonal(N):
 
    n = (4 + np.sqrt(20 * N + 16)) / 10
 
    # Condition to check if the
    # N is a dodecagonal number
    return (n - int(n)) == 0
 
# Driver Code
N = 12
 
# Function call
if (isdodecagonal(N)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by PratikBasu


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check if number N
// is a dodecagonal number or not
static bool isdodecagonal(int N)
{
     
    float n = (float) ((4 + Math.Sqrt(20 * N +
                                      16)) / 10);
 
    // Condition to check if the
    // N is a dodecagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given number
    int N = 12;
 
    // Function call
    if (isdodecagonal(N))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
// Javascript program for the above approach
 
// Function to check if number N
// is a dodecagonal number or not
function isdodecagonal(N)
{
    let n
        = (4 + Math.sqrt(20 * N + 16))
          / 10;
 
    // Condition to check if the
    // N is a dodecagonal number
    return (n - parseInt(n)) == 0;
}
 
// Driver Code
// Given Number
let N = 12;
 
// Function call
if (isdodecagonal(N))
{
    document.write("Yes");
}
else
{
    document.write("No");
}
 
// This code is contributed by subhammahato348.
</script>


Output

Yes

Time Complexity: O(log N), since sqrt() function has been used
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 23 Nov, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials