Skip to content
Related Articles

Related Articles

Improve Article
Program to check if N is a Centered Octagonal Number
  • Last Updated : 23 Mar, 2021

Given an integer N, the task is to check if it is a Centered Octagonal number or not. If the number N is an Centered Octagonal Number then print “Yes” else print “No”.

Centered Octagonal number represents an octagon with a dot in the centre and others dots surrounding the centre dot in the successive octagonal layer.The first few Centered Octagonal numbers are 1, 9, 25, 49, 81, 121, 169, 225, 289, 361 …

Examples:  

Input: N = 9 
Output: Yes 
Explanation: 
Second Centered Octagonal number is 9.
Input: 16 
Output: No 

Approach:  



1. The Kth term of the Centered Octagonal number is given as
K^{th} Term = 4*K^{2} - 4*K + 1

2. As we have to check that the given number can be expressed as a Centered Octagonal Number or not. This can be checked as follows – 

=> N = {4*K^{2} - 4*K + 1}
=> K = \frac{1 + \sqrt{N}}{2}

3. If the value of K calculated using the above formula is an integer, then N is a Centered Octagonal Number.

4. Else N is not a Centered Octagonal Number.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to check if the number N
// is a Centered Octagonal number
bool isCenteredOctagonal(int N)
{
    float n
        = (1 + sqrt(N))
          / 2;
 
    // Condition to check if the number
    // is a Centered Octagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 9;
 
    // Function call
    if (isCenteredOctagonal(N)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check if the number N
// is a centered octagonal number
static boolean isCenteredOctagonal(int N)
{
    float n = (float) ((1 + Math.sqrt(N)) / 2);
 
    // Condition to check if the number
    // is a centered octagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Number
    int N = 9;
 
    // Function call
    if (isCenteredOctagonal(N))
    {
        System.out.print("Yes");
    }
    else
    {
        System.out.print("No");
    }
}
}
 
// This code is contributed by sapnasingh4991

Python3




# Python3 program for the above approach
import numpy as np
 
# Function to check if the number N
# is a centered octagonal number
def isCenteredOctagonal(N):
 
    n = (1 + np.sqrt(N)) / 2
 
    # Condition to check if N
    # is a centered octagonal number
    return (n - int(n)) == 0
 
# Driver Code
N = 9
 
# Function call
if (isCenteredOctagonal(N)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by PratikBasu

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check if the number N
// is a centered octagonal number
static bool isCenteredOctagonal(int N)
{
    float n = (float) ((1 + Math.Sqrt(N)) / 2);
 
    // Condition to check if the number
    // is a centered octagonal number
    return (n - (int)n) == 0;
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given Number
    int N = 9;
 
    // Function call
    if (isCenteredOctagonal(N))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by rutvik_56

Javascript




<script>
 
// javascript program for the above approach
 
 
// Function  to check if the number N
// is a Centered Octagonal number
function isCenteredOctagonal( N)
{
    let n
        = (1 + Math.sqrt(N))
          / 2;
 
    // Condition to check if the number
    // is a Centered Octagonal number
    return (n - parseInt(n)) == 0;
}
 
// Driver Code
 
    // Given Number
    let N = 9;
 
    // Function call
    if (isCenteredOctagonal(N)) {
         document.write( "Yes");
    }
    else {
        document.write( "No");
    }
     
 
    // This code contributed by aashish1995
 
</script>
Output: 
Yes

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :