Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Program for triangular patterns of alphabets

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Pattern printing has always been an interesting topic in programming languages. It emphasizes the usage of inner and outer loops in nested loops and creates beautiful patterns from them. 
Below are given some patterns using alphabets. Our task is to write programs for the below-given patterns, such that each pattern should print on the basis of given input ‘n’ when n = count of alphabets.

First Pattern

C++




// C++ code for triangular 
// patterns of alphabets 
#include <bits/stdc++.h>
using namespace std;
  
int main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++)
    {
        for (j = i; j <= n; j++)
        {
            cout << (char)('A' - 1 + j) << " ";
        }
        cout << endl;
    }
    return 0;
}
  
// This code is contributed by
// shubhamsingh10

C




#include <stdio.h>
int main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) {
        for (j = i; j <= n; j++) {
            printf("%c", 'A' - 1 + j);
        }
        printf("\n");
    }
    return 0;
}

Java




import java.io.*;
public class GFG
{
public static void main(String args[])
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) 
    {
        int ch = 65;
            for (j = i; j <= n; j++) 
            {
                System.out.print((char)(ch -1 + j) + " ");
            }
        System.out.print("\n");
    }
}
}
  
// This code is contributed
// by Akanksha Rai

Python3




# Python 3 code for triangular 
# patterns of alphabets 
n = 5
for i in range(1, n + 1):
    for j in range(i, n + 1):
        print(chr(ord('A') - 1 + j), end = ' ')
    print()
  
# This code is contributed
# by SamyuktaSHegde 

C#




using System;
class GFG
{
public static void Main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) 
    {
        int ch = 65;
            for (j = i; j <= n; j++) 
            {
                Console.Write((char)(ch - 1 + j) + " ");
            }
        Console.Write("\n");
    }
}
}
  
// This code is contributed
// by Akanksha Rai

PHP




<?php
// PHP code for triangular
// patterns of alphabets
  
$n = 5;
    for ($i = 1; $i <= $n; $i++)
    {
        for ($j = $i; $j <= $n; $j++) 
        {
            echo chr(65 - 1 + $j)." ";
        }
        echo "\n";
    }
  
// This code is contributed by mits 
?>

Javascript




<script>
  
      // JavaScript code for triangular
      // patterns of alphabets
      var i,
        j,
        n = 5;
      for (i = 1; i <= n; i++)
      {
        for (j = i; j <= n; j++) 
        {
          document.write(
            String.fromCharCode("A".charCodeAt(0) - 1 + j)
            + "  "
          );
        }
        document.write("<br>");
      }
        
</script>

Output

A B C D E 
B C D E 
C D E 
D E 
E 

Time complexity: O(n*n), where N is the number of alphabets.

Auxiliary Space: O(1), as constant extra space is required.

Second Pattern

C++




#include <bits/stdc++.h>
using namespace std;
int main()
{
    int i, j, n = 5;
    for (i = n; i >= 1; i--) {
        for (j = 1; j <= i; j++) {
            cout << (char)('A' - 1 + i) << " ";
        }
        cout << endl;
    }
    return 0;
}
  
// This code is contributed by shubhamsingh10

C




#include <stdio.h>
int main()
{
    int i, j, n = 5;
    for (i = n; i >= 1; i--) {
        for (j = 1; j <= i; j++) {
            printf("%c ", 'A' - 1 + i);
        }
        printf("\n");
    }
    return 0;
}

Java




import java.io.*;
public class GFG 
{
      
// Driver code
public static void main(String[] args)
{
    int i, j, n = 5;
    for (i = n; i >= 1; i--) 
    {
        for (j = 1; j <= i; j++) 
        {
            System.out.printf("%c ", 'A' - 1 + i);
        }
        System.out.printf("\n");
    }
    }
}
  
// This code is contributed by PrinciRaj1992 

Python3




# Python3 code for triangular
# patterns of alphabets
n = 5
for i in range(n, 0, -1):
    for j in range(1, i + 1, 1):
        print(chr(ord('A') - 1 + i),    
                         end = ' ')
    print()
  
# This code is contributed by Rajput-Ji

C#




// C# code for triangular
// patterns of alphabets
using System;
      
class GFG 
{
      
// Driver code
public static void Main(String[] args)
{
    int i, j, n = 5;
    for (i = n; i >= 1; i--) 
    {
        for (j = 1; j <= i; j++) 
        {
            Console.Write("{0} "
                         (char)('A' - 1 + i));
        }
        Console.Write("\n");
    }
}
}
  
// This code is contributed 
// by Princi Singh

PHP




<?php
// PHP code for triangular
// patterns of alphabets
  
$n = 5;
    for ($i = $n; $i >= 1; $i--) 
    {
        for ($j = 1; $j <= $i; $j++) 
        {
            echo chr(65 - 1 + $i)." ";
        }
        echo "\n";
    }
  
// This code is contributed by mits 
?>

Javascript




<script>
  
var i, j, n = 5;
  
for (i = n; i >= 1; i--) 
{
    for (j = 1; j <= i; j++) 
    {
        document.write(String.fromCharCode('A'.charCodeAt(0) - 1 + i)
        +" ");
    }
    document.write("<br>");
}
  
// This code is contributed by 29AjayKumar 
  
</script>

Output

E E E E E 
D D D D 
C C C 
B B 
A 

Time complexity: O(n*n), where N is the number of alphabets.
Auxiliary Space: O(1), as constant extra space is required.

Third Pattern

C++




#include <iostream>
using namespace std;
int main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) {
        for (j = 1; j <= i; j++) {
            cout << (char)('A' + j - 1) << " ";
        }
        cout << endl;
    }
    return 0;
}
  
// This code is contributed by shubhamsingh10

C




#include <stdio.h>
int main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) {
        for (j = 1; j <= i; j++) {
            printf("%c ", 'A' + j - 1);
        }
        printf("\n");
    }
    return 0;
}

Java




import java.io.*;
  
class GFG 
{
    public static void main (String[] args) 
    {
        int i, j, n = 5;
        for (i = 1; i <= n; i++) 
        {
            int ch = 65;
            for (j = 1; j <= i; j++) 
            {
                System.out.print(((char)ch));
                ch++;
            }
        System.out.println();
        }
    }
}
  
//This code is contributed by m_kit

Python3




# Python3 code for triangular
# patterns of alphabets
if __name__ == '__main__':
      
    n = 5;
    for i in range(1, n + 1):
        for j in range(1, i + 1):
            print(chr(ord('A') + j - 1), 
                             end = " ");
  
        print("");
      
# This code is contributed by 29AjayKumar

C#




// C# code for triangular
// patterns of alphabets
using System;
  
class GFG
{
    static public void Main ()
    {
          
        int i, j, n = 5;
        for (i = 1; i <= n; i++) 
        {
            int ch = 65;
            for (j = 1; j <= i; j++) 
            {
                Console.Write(((char)ch));
                ch++;
            }
        Console.WriteLine();
        }
    }
}
  
// This code is contributed by ajit

PHP




<?php
// PHP code for triangular
// patterns of alphabets
  
$n = 5;
    for ($i = 1; $i <= $n; $i++) 
    {
        for ($j = 1; $j <= $i; $j++) 
        {
              
            //Ascii value of A is 65
            echo chr(65 + $j - 1)." ";
        }
        echo "\n";
    }
  
// This code is contributed by mits 
?>

Javascript




<script>
  
let i, j, n = 5;
for(i = 1; i <= n; i++)
{
    let ch = 65;
    for(j = 1; j <= i; j++)
    {
        document.write(
            String.fromCharCode(ch) + " ");
        ch++;
    }
    document.write("<br>");
}
  
// This code is contributed by rag2127
  
</script>

Output

A 
A B 
A B C 
A B C D 
A B C D E 

Time complexity: O(n*n), where N is the number of alphabets.
Auxiliary Space: O(1), as constant extra space is required.

Fourth Pattern

C++




#include <iostream>
using namespace std;
  
int main() 
    int i, j, n = 5; 
    for (i = n; i >= 1; i--) { 
        for (j = i; j <= n; j++) { 
            cout << (char)('A' + j - 1) << " "
        
        cout << endl; 
    
    return 0; 
  
// This code is contributed by Shubhamsingh10

C




#include <stdio.h>
int main()
{
    int i, j, n = 5;
    for (i = n; i >= 1; i--) {
        for (j = i; j <= n; j++) {
            printf("%c ", 'A' + j - 1);
        }
        printf("\n");
    }
    return 0;
}

Java




// Java code for triangular
// patterns of alphabets
import java.io.*;
public class GFG
{
    public static void main(String[] args) 
    {
        int i, j, n = 5;
        for (i = n; i >= 1; i--) 
        {
            for (j = i; j <= n; j++)
            {
                System.out.printf("%c ", ('A' + j - 1));
            }
            System.out.println("");
        }
    }
}
  
// This code is contributed by PrinciRaj1992 

Python3




# Python3 code for triangular
# patterns of alphabets
if __name__ == '__main__':
    n = 5;
    for i in range(n, 0, -1):
        for j in range(i, n + 1, 1):
            print(chr(ord('A') + j - 1), 
                             end = " ");
  
        print("");
  
# This code is contributed by Rajput-Ji

C#




// C# code for triangular
// patterns of alphabets
using System;
  
class GFG
{
    public static void Main() 
    {
        int i, j, n = 5;
        for (i = n; i >= 1; i--) 
        {
            for (j = i; j <= n; j++)
            {
                Console.Write("{0} ",(char)('A' + j - 1));
            }
            Console.WriteLine("");
        }
    }
}
  
// This code is contributed by Code_Mech

PHP




<?php
// PHP code for triangular
// patterns of alphabets
  
$n = 5;
for ($i = $n; $i >= 1; $i--)
{
    for ($j = $i; $j <= $n; $j++)
    {
        echo chr(65 + $j - 1)." ";
    }
    echo "\n";
}
  
// This code is contributed by mits 
?>

Javascript




<script>
  
let i, j, n = 5;
        for (i = n; i >= 1; i--)
        {
            for (j = i; j <= n; j++)
            {
                document.write(String.fromCharCode('A'.charCodeAt(0) + j - 1)+" ");
            }
            document.write("<br>");
        }
  
  
// This code is contributed by avanitrachhadiya2155
</script>

Output

E 
D E 
C D E 
B C D E 
A B C D E 

Time complexity: O(n*n), where N is the number of alphabets.
Auxiliary Space: O(1), as constant extra space is required.

Fifth Pattern

C++




#include <iostream>
using namespace std;
int main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) {
        for (j = n; j >= i; j--) {
            cout <<(char)('A' - 1 + i)<<" ";
        }
        cout << endl;
    }
    return 0;
}
  
// This code is contributed by shubhamsingh10

C




#include <stdio.h>
int main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) {
        for (j = n; j >= i; j--) {
            printf("%c ", 'A' - 1 + i);
        }
        printf("\n");
    }
    return 0;
}

Java




/* Java program to find best
meeting point in 2D array*/
import java.util.*;
  
public class GFG 
{
  
public static void main(String[] args) 
{
    int i, j, n = 5
    for (i = 1; i <= n; i++) 
    
        for (j = n; j >= i; j--) 
        
            System.out.printf("%c ", ('A' - 1 + i)); 
        
        System.out.println("");; 
    }
}
  
// This code is contributed by 29AjayKumar

Python3




# Python3 code for triangular
# patterns of alphabets
if __name__ == '__main__':
    i, j, n = 0, 0, 5;
    for i in range(1, n + 1):
        for j in range(n, i - 1, -1):
            print(chr(ord('A') - 1 + i), end = " ");
        print("");
  
# This code is contributed by Princi Singh

C#




/* C# program to find best
meeting point in 2D array*/
using System;
  
class GFG 
{
  
// Driver code
public static void Main(String[] args) 
{
    int i, j, n = 5; 
    for (i = 1; i <= n; i++) 
    
        for (j = n; j >= i; j--) 
        
            Console.Write("{0} ", (char)('A' - 1 + i)); 
        
        Console.WriteLine("");; 
    }
}
}
  
// This code contributed by Rajput-Ji

PHP




<?php
// PHP code for triangular
// patterns of alphabets
  
$n = 5;
    for ($i = 1; $i <= $n; $i++)
    {
        for ($j = $n; $j >= $i; $j--) 
        {
            echo chr(65 - 1 + $i)." ";
        }
        echo "\n";
    }
  
// This code is contributed by mits 
?>

Javascript




<script>
  
  
/* JavaScript program to find best
meeting point in 2D array*/
var i, j, n = 5; 
    for (i = 1; i <= n; i++) 
    
        for (j = n; j >= i; j--) 
        {   
            document.write(String.fromCharCode('A'.charCodeAt(0) - 1 + i)+" ");
        
        document.write("<br>");
    }
  
// This code is contributed by shivanisinghss2110
  
</script>

Output

A A A A A 
B B B B 
C C C 
D D 
E 

Time complexity: O(n*n), where N is the number of alphabets.
Auxiliary Space: O(1), as constant extra space is required.

Sixth Pattern

C++




// C++ code for triangular
// patterns of alphabets
#include <iostream>
using namespace std;
  
int main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) {
        for (j = i; j >= 1; j--) {
            cout << (char)('A' + j - 1) << " ";
        }
        cout << endl;
    }
    return 0;
}
  
// This code is contributed by SHUBHAMSINGH10

C




// C code for triangular
// patterns of alphabets
#include <stdio.h>
int main()
{
    int i, j, n = 5;
    for (i = 1; i <= n; i++) {
        for (j = i; j >= 1; j--) {
            printf("%c ", 'A' + j - 1);
        }
        printf("\n");
    }
    return 0;
}

Java




// Java code for triangular
// patterns of alphabets
import java.io.*;
public class GFG
{
  
    public static void main(String[] args) 
    {
        int i, j, n = 5;
        for (i = 1; i <= n; i++)
        {
            for (j = i; j >= 1; j--) 
            {
                System.out.printf("%c ", 'A' + j - 1);
            }
            System.out.printf("\n");
        }
    }
}
  
// This code is contributed by Rajput-Ji

Python3




# Python3 code for triangular
# patterns of alphabets
  
if __name__ == '__main__':
      
    i, j, n = 0, 0, 5;
    for i in range(1, n + 1):
        for j in range(i, 0, -1):
            print(chr(ord('A') + j - 1), 
                             end = " ");
  
        print();
  
# This code is contributed by Rajput-Ji

C#




// C# code for triangular 
// patterns of alphabets 
using System;
  
class GFG 
  
    // Driver code
    public static void Main(String[] args) 
    
        int i, j, n = 5; 
        for (i = 1; i <= n; i++) 
        
            for (j = i; j >= 1; j--) 
            
                Console.Write("{0} "
                    Convert.ToChar('A' + j - 1)); 
            
            Console.Write("\n"); 
        
    
  
// This code is contributed by PrinciRaj1992

PHP




<?php
// PHP code for triangular
// patterns of alphabets
  
$n = 5;
for ($i = 1; $i <= $n; $i++) 
{
    for ($j = $i; $j >= 1; $j--) 
    {
        echo chr(65 + $j - 1)." ";
    }
    echo "\n";
}
  
// This code is contributed by mits 
?>

Javascript




Javascript<script>
  
  
/* JavaScript program to find best
meeting point in 2D array*/
var i, j, n = 5; 
    for (i = 1; i <= n; i++)
        {
            for (j = i; j >= 1; j--) 
        {   
             document.write(String.fromCharCode('A'.charCodeAt(0) + j - 1)+" ");
        
        document.write("<br>");
    }
  
// This code is contributed by shivanisinghss2110
  
</script>

Output

A 
B A 
C B A 
D C B A 
E D C B A 

Time complexity: O(n*n), where N is the number of alphabets.
Auxiliary Space: O(1), as constant extra space is required.


My Personal Notes arrow_drop_up
Last Updated : 17 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials