# Program to print triangular number series till n

A triangular number or triangle number counts objects arranged in an equilateral triangle, as in the diagram on the right. The n-th triangular number is the number of dots composing a triangle with n dots on a side, and is equal to the sum of the n natural numbers from 1 to n.

Examples :

```Input : 5
Output : 1 3 6 10 15

Input : 10
Output : 1 3 6 10 15 21 28 36 45 55

Explanation :
For k = 1 and j = 1 -> print k ( i.e. 1);
increase j by 1 and add into k then print k ( i.e  3 ) update k
increase j by 1 and add into k then print k ( i.e  6 ) update k
increase j by 1 and add into k then print k ( i.e 10 ) update k
increase j by 1 and add into k then print k ( i.e 15 ) update k
increase j by 1 and add into k then print k ( i.e 21 ) update k
.
.
and so on.```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach used is very simple. Iterate for loop till the value given n and for each iteration increase j by 1 and add it into k, which will simply print the triangular number series till n.

Below is the program implementing above approach:

## C

 `// C Program to find Triangular Number Series ` `#include ` ` `  `// Function to find triangular number ` `void` `triangular_series(``int` `n) ` `{ ` `    ``int` `i, j = 1, k = 1; ` ` `  `    ``// For each iteration increase j by 1 ` `    ``// and add it into k ` `    ``for` `(i = 1; i <= n; i++) { ` `        ``printf``(``" %d "``, k); ` `        ``j = j + 1; ``// Increasing j by 1 ` `        ``k = k + j; ``// Add value of j into k and update k ` `    ``} ` `} ` `// Driven Function ` `int` `main() ` `{ ` `    ``int` `n = 5; ` `    ``triangular_series(n); ` `    ``return` `0; ` `} `

## Java

 `// Java Program to print triangular number series till n ` `import` `java.util.*; ` ` `  `class` `GFG { ` `     `  `    ``// Function to find triangular number ` `    ``static` `void` `triangular_series(``int` `n) ` `    ``{ ` `        ``int` `i, j = ``1``, k = ``1``; ` `      `  `        ``// For each iteration increase j by 1 ` `        ``// and add it into k ` `        ``for` `(i = ``1``; i <= n; i++) { ` ` `  `            ``System.out.printf(``"%d "``, k); ` `            ``j = j + ``1``; ``// Increasing j by 1 ` `            ``k = k + j; ``// Add value of j into k and update k ` `        ``} ` `    ``} ` `     `  `    ``// Driver function  ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `            ``int` `n = ``5``; ` `            ``triangular_series(n); ` `    ``} ` `} ` `         `  `// This code is contributed by Arnav Kr. Mandal. `

## Python3

 `# Python3 code to find Triangular  ` `# Number Series ` ` `  `# Function to find triangular number ` `def` `triangular_series( n ): ` `    ``j ``=` `1` `    ``k ``=` `1` `     `  `    ``# For each iteration increase j  ` `    ``# by 1 and add it into k ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `        ``print``(k, end ``=` `' '``) ` `        ``j ``=` `j ``+` `1` `# Increasing j by 1 ` `         `  `        ``# Add value of j into k and update k ` `        ``k ``=` `k ``+` `j  ` `         `  `# Driven Code ` `n ``=` `5` `triangular_series(n) ` ` `  `# This code is contributed by "Sharad_Bhardwaj" `

## C#

 `// C# Program to print triangular ` `// number series till n ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// Function to find triangular number ` `    ``static` `void` `triangular_series(``int` `n) ` `    ``{ ` `        ``int` `i, j = 1, k = 1; ` `     `  `        ``// For each iteration increase j by 1 ` `        ``// and add it into k ` `        ``for` `(i = 1; i <= n; i++) { ` ` `  `            ``Console.Write(k +``" "``); ` `            ``j += 1; ``// Increasing j by 1 ` `            ``k += j; ``// Add value of j into k and update k ` `        ``} ` `    ``} ` `     `  `    ``// Driver Code  ` `    ``public` `static` `void` `Main()  ` `    ``{ ` `            ``int` `n = 5; ` `            ``triangular_series(n); ` `    ``} ` `} ` `         `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output :

```1 3 6 10 15
```

Alternate Solution :
The solution is based on the fact that i-th Triangular number is sum of first i natural numbers, i.e., i * (i + 1)/2

## C

 `// C Program to find Triangular Number Series ` `#include ` ` `  `// Function to find triangular number ` `void` `triangular_series(``int` `n) ` `{ ` `    ``for` `(``int` `i = 1; i <= n; i++)  ` `        ``printf``(``" %d "``, i*(i+1)/2); ` `} ` ` `  `// Driven Function ` `int` `main() ` `{ ` `    ``int` `n = 5; ` `    ``triangular_series(n); ` `    ``return` `0; ` `} `

## Java

 `//Java program to print triangular number series till n ` `import` `java.util.*; ` ` `  `class` `GFG { ` `     `  `    ``// Function to find triangular number ` `    ``static` `void` `triangular_series(``int` `n) ` `    ``{ ` `        ``for` `(``int` `i = ``1``; i <= n; i++)  ` `            ``System.out.printf(``"%d "``;, i*(i+``1``)/``2``); ` `    ``} ` `     `  `    ``// Driver function  ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `            ``int` `n = ``5``; ` `            ``triangular_series(n); ` `    ``} ` `} ` `         `  `//This code is contributed by Arnav Kr. Mandal. `

## Python3

 `# Python3 code to find Triangular  ` `# Number Series ` `  `  `def` `triangular_series(n): ` `  `  `     ``for` `i ``in` `range``(``1``, n ``+` `1``): ` `         ``print``( i``*``(i``+``1``)``/``/``2``,end``=``' '``) ` `  `  `# Driver code ` `n ``=` `5` `triangular_series(n)  ` `# This code is contributed by ihritik `

## C#

 `// C# program to print triangular ` `// number series till n ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// Function to find triangular number ` `    ``static` `void` `triangular_series(``int` `n) ` `    ``{ ` `        ``for` `(``int` `i = 1; i <= n; i++)  ` `            ``Console.Write(i * (i + 1) / 2 + ``" "``); ` `    ``} ` `     `  `    ``// Driver Code  ` `    ``public` `static` `void` `Main()  ` `    ``{ ` `            ``int` `n = 5; ` `            ``triangular_series(n); ` `    ``} ` `} ` `         `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output :

```1 3 6 10 15
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : jit_t, ihritik

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.