# Print a Binary Tree in Vertical Order | Set 2 (Map based Method)

• Difficulty Level : Medium
• Last Updated : 24 Oct, 2021

Given a binary tree, print it vertically. The following example illustrates the vertical order traversal.

```           1
/    \
2      3
/ \   /   \
4   5  6   7
/  \
8   9

The output of print this tree vertically will be:
4
2
1 5 6
3 8
7
9```

Become a success story instead of just reading about them. Prepare for coding interviews at Amazon and other top product-based companies with our Amazon Test Series. Includes topic-wise practice questions on all important DSA topics along with 10 practice contests of 2 hours each. Designed by industry experts that will surely help you practice and sharpen your programming skills. Wait no more, start your preparation today! We have discussed a O(n2) solution in the previous post. In this post, an efficient solution based on the hash map is discussed. We need to check the Horizontal Distances from the root for all nodes. If two nodes have the same Horizontal Distance (HD), then they are on the same vertical line. The idea of HD is simple. HD for root is 0, a right edge (edge connecting to right subtree) is considered as +1 horizontal distance and a left edge is considered as -1 horizontal distance. For example, in the above tree, HD for Node 4 is at -2, HD for Node 2 is -1, HD for 5 and 6 is 0 and HD for node 7 is +2.
We can do preorder traversal of the given Binary Tree. While traversing the tree, we can recursively calculate HDs. We initially pass the horizontal distance as 0 for root. For left subtree, we pass the Horizontal Distance as Horizontal distance of root minus 1. For right subtree, we pass the Horizontal Distance as Horizontal Distance of root plus 1. For every HD value, we maintain a list of nodes in a hash map. Whenever we see a node in traversal, we go to the hash map entry and add the node to the hash map using HD as a key in a map.
Following is the C++ implementation of the above method. Thanks to Chirag for providing the below C++ implementation.

## C++

 `// C++ program for printing vertical order of a given binary tree``#include ``#include ``#include ``using` `namespace` `std;` `// Structure for a binary tree node``struct` `Node``{``    ``int` `key;``    ``Node *left, *right;``};` `// A utility function to create a new node``struct` `Node* newNode(``int` `key)``{``    ``struct` `Node* node = ``new` `Node;``    ``node->key = key;``    ``node->left = node->right = NULL;``    ``return` `node;``}` `// Utility function to store vertical order in map 'm'``// 'hd' is horizontal distance of current node from root.``// 'hd' is initially passed as 0``void` `getVerticalOrder(Node* root, ``int` `hd, map<``int``, vector<``int``>> &m)``{``    ``// Base case``    ``if` `(root == NULL)``        ``return``;` `    ``// Store current node in map 'm'``    ``m[hd].push_back(root->key);` `    ``// Store nodes in left subtree``    ``getVerticalOrder(root->left, hd-1, m);` `    ``// Store nodes in right subtree``    ``getVerticalOrder(root->right, hd+1, m);``}` `// The main function to print vertical order of a binary tree``// with the given root``void` `printVerticalOrder(Node* root)``{``    ``// Create a map and store vertical order in map using``    ``// function getVerticalOrder()``    ``map < ``int``,vector<``int``> > m;``    ``int` `hd = 0;``    ``getVerticalOrder(root, hd,m);` `    ``// Traverse the map and print nodes at every horizontal``    ``// distance (hd)``    ``map< ``int``,vector<``int``> > :: iterator it;``    ``for` `(it=m.begin(); it!=m.end(); it++)``    ``{``        ``for` `(``int` `i=0; isecond.size(); ++i)``            ``cout << it->second[i] << ``" "``;``        ``cout << endl;``    ``}``}` `// Driver program to test above functions``int` `main()``{``    ``Node *root = newNode(1);``    ``root->left = newNode(2);``    ``root->right = newNode(3);``    ``root->left->left = newNode(4);``    ``root->left->right = newNode(5);``    ``root->right->left = newNode(6);``    ``root->right->right = newNode(7);``    ``root->right->left->right = newNode(8);``    ``root->right->right->right = newNode(9);``    ``cout << ``"Vertical order traversal is n"``;``    ``printVerticalOrder(root);``    ``return` `0;``}`

## Java

 `// Java program for printing vertical order of a given binary tree``import` `java.util.TreeMap;``import` `java.util.Vector;``import` `java.util.Map.Entry;` `public` `class` `VerticalOrderBtree``{``    ``// Tree node``    ``static` `class` `Node``    ``{``        ``int` `key;``        ``Node left;``        ``Node right;``        ` `        ``// Constructor``        ``Node(``int` `data)``        ``{``            ``key = data;``            ``left = ``null``;``            ``right = ``null``;``        ``}``    ``}``    ` `    ``// Utility function to store vertical order in map 'm'``    ``// 'hd' is horizontal distance of current node from root.``    ``// 'hd' is initially passed as 0``    ``static` `void` `getVerticalOrder(Node root, ``int` `hd,``                                ``TreeMap> m)``    ``{``        ``// Base case``        ``if``(root == ``null``)``            ``return``;``        ` `        ``//get the vector list at 'hd'``        ``Vector get =  m.get(hd);``        ` `        ``// Store current node in map 'm'``        ``if``(get == ``null``)``        ``{``            ``get = ``new` `Vector<>();``            ``get.add(root.key);``        ``}``        ``else``            ``get.add(root.key);``        ` `        ``m.put(hd, get);``        ` `        ``// Store nodes in left subtree``        ``getVerticalOrder(root.left, hd-``1``, m);``        ` `        ``// Store nodes in right subtree``        ``getVerticalOrder(root.right, hd+``1``, m);``    ``}``    ` `    ``// The main function to print vertical order of a binary tree``    ``// with the given root``    ``static` `void` `printVerticalOrder(Node root)``    ``{``        ``// Create a map and store vertical order in map using``        ``// function getVerticalOrder()``        ``TreeMap> m = ``new` `TreeMap<>();``        ``int` `hd =``0``;``        ``getVerticalOrder(root,hd,m);``        ` `        ``// Traverse the map and print nodes at every horizontal``        ``// distance (hd)``        ``for` `(Entry> entry : m.entrySet())``        ``{``            ``System.out.println(entry.getValue());``        ``}``    ``}``    ` `    ``// Driver program to test above functions``    ``public` `static` `void` `main(String[] args) {` `        ``// TO DO Auto-generated method stub``        ``Node root = ``new` `Node(``1``);``        ``root.left = ``new` `Node(``2``);``        ``root.right = ``new` `Node(``3``);``        ``root.left.left = ``new` `Node(``4``);``        ``root.left.right = ``new` `Node(``5``);``        ``root.right.left = ``new` `Node(``6``);``        ``root.right.right = ``new` `Node(``7``);``        ``root.right.left.right = ``new` `Node(``8``);``        ``root.right.right.right = ``new` `Node(``9``);``        ``System.out.println(``"Vertical Order traversal is"``);``        ``printVerticalOrder(root);``    ``}``}``// This code is contributed by Sumit Ghosh`

## Python

 `# Python program for printing vertical order of a given``# binary tree` `# A binary tree node``class` `Node:``    ``# Constructor to create a new node``    ``def` `__init__(``self``, key):``        ``self``.key ``=` `key``        ``self``.left ``=` `None``        ``self``.right ``=` `None` `# Utility function to store vertical order in map 'm'``# 'hd' is horizontal distance of current node from root``# 'hd' is initially passed as 0``def` `getVerticalOrder(root, hd, m):` `    ``# Base Case``    ``if` `root ``is` `None``:``        ``return``    ` `    ``# Store current node in map 'm'``    ``try``:``        ``m[hd].append(root.key)``    ``except``:``        ``m[hd] ``=` `[root.key]``    ` `    ``# Store nodes in left subtree``    ``getVerticalOrder(root.left, hd``-``1``, m)``    ` `    ``# Store nodes in right subtree``    ``getVerticalOrder(root.right, hd``+``1``, m)` `# The main function to print vertical order of a binary``#tree ith given root``def` `printVerticalOrder(root):``    ` `    ``# Create a map and store vertical order in map using``    ``# function getVerticalORder()``    ``m ``=` `dict``()``    ``hd ``=` `0``    ``getVerticalOrder(root, hd, m)``    ` `    ``# Traverse the map and print nodes at every horizontal``    ``# distance (hd)``    ``for` `index, value ``in` `enumerate``(``sorted``(m)):``        ``for` `i ``in` `m[value]:``            ``print` `i,``        ``print`  `# Driver program to test above function``root ``=` `Node(``1``)``root.left ``=` `Node(``2``)``root.right ``=` `Node(``3``)``root.left.left ``=` `Node(``4``)``root.left.right ``=` `Node(``5``)``root.right.left ``=` `Node(``6``)``root.right.right ``=` `Node(``7``)``root.right.left.right ``=` `Node(``8``)``root.right.right.right ``=` `Node(``9``)``print` `"Vertical order traversal is"``printVerticalOrder(root)` `# This code is contributed by Nikhil Kumar Singh(nickzuck_007)`
Output
```Vertical order traversal is n4
2
1 5 6
3 8
7
9 ```

Time Complexity of hashing based solution can be considered as O(n) under the assumption that we have good hashing function that allows insertion and retrieval operations in O(1) time. In the above C++ implementation, map of STL is used. map in STL is typically implemented using a Self-Balancing Binary Search Tree where all operations take O(Logn) time. Therefore time complexity of the above implementation is O(nLogn).
Note that the above solution may not print nodes in same vertical order as they appear in tree. For example, the above program prints 12 before 9. See this for a sample run.

```             1
/    \
2       3
/      /  \
4    5  6    7
/  \
8 10  9
\
11
\
12```

Refer below post for level order traversal based solution. The below post makes sure that nodes of a vertical line are printed in the same order as they appear in the tree.
Print a Binary Tree in Vertical Order | Set 3 (Using Level Order Traversal)

Using Preorder Traversal Approach, Maintain the Order of Nodes in Same Vertical Order as They Appear in Tree:

We can also maintain the order of nodes in same vertical order as they appear in the tree. Nodes having same horizontal distance will print according to level order.

For example, In below diagram 9 and 12 have same horizontal distance. We can make sure that  if a node like 12 comes below in same vertical line, it is printed after a node like 9

Idea: Instead of using horizontal distance as a key in the map, we will use  horizontal distance + vertical distance as key. We know that the number of nodes can’t be more than integer range in a binary tree.

We will use first 30 bits of key for horizontal distance [MSB to LSB] and will use 30 next bits for vertical distance. Thus keys will be stored in map as per our requirement.

Below is the implementation of above approach.

## C++14

 `// C++ program for printing``// vertical order of a given binary``// tree``#include ``using` `namespace` `std;` `struct` `Node {``    ``int` `data;``    ``Node *left, *right;``};` `struct` `Node* newNode(``int` `data)``{``    ``struct` `Node* node = ``new` `Node;``    ``node->data = data;``    ``node->left = node->right = NULL;``    ``return` `node;``}` `// Store vertical order``// in map "m", hd = horizontal``// distance, vd = vertical distance``void` `preOrderTraversal(Node* root,``                       ``long` `long` `int` `hd,``                       ``long` `long` `int` `vd,``                       ``map<``long` `long` `int``,``                       ``vector<``int``> >& m)``{``    ``if` `(!root)``        ``return``;``    ``// key = horizontal``    ``// distance (30 bits) + vertical``    ``// distance (30 bits) map``    ``// will store key in sorted``    ``// order. Thus nodes having same``    ``// horizontal distance``    ``// will sort according to``    ``// vertical distance.``    ``long` `long` `val = hd << 30 | vd;` `    ``// insert in map``    ``m[val].push_back(root->data);` `    ``preOrderTraversal(root->left, hd - 1, vd + 1, m);``    ``preOrderTraversal(root->right, hd + 1, vd + 1, m);``}` `void` `verticalOrder(Node* root)``{``    ``// map to store all nodes in vertical order.``    ``// keys will be horizontal + vertical distance.``    ``map<``long` `long` `int``, vector<``int``> > mp;` `    ``preOrderTraversal(root, 0, 1, mp);` `    ``// print map``    ``int` `prekey = INT_MAX;``    ``map<``long` `long` `int``, vector<``int``> >::iterator it;``    ``for` `(it = mp.begin(); it != mp.end(); it++) {``        ``if` `(prekey != INT_MAX``            ``&& (it->first >> 30) != prekey) {``            ``cout << endl;``        ``}``        ``prekey = it->first >> 30;``        ``for` `(``int` `j = 0; j < it->second.size(); j++)``            ``cout << it->second[j] << ``" "``;``    ``}``}` `// Driver code``int` `main()``{``    ``Node* root = newNode(1);``    ``root->left = newNode(2);``    ``root->right = newNode(3);``    ``root->left->left = newNode(4);``    ``root->left->right = newNode(5);``    ``root->right->left = newNode(6);``    ``root->right->right = newNode(7);``    ``root->right->left->right = newNode(8);``    ``root->right->right->right = newNode(9);``    ``cout << ``"Vertical order traversal :- "` `<< endl;``    ``verticalOrder(root);``    ``return` `0;``}`
Output
```Vertical order traversal :-
4
2
1 5 6
3 8
7
9 ```

Time Complexity of the above implementation is O(n Log n).

Auxiliary Space: O(n)

Another Approach using computeIfAbsent method:

We can write the code in a more concise way, by using computeIfAbsent method of the map in java and by using a treemap for natural sorting based upon keys.

Below is the implementation of above approach.

## Java

 `// Java Program for above approach``import` `java.util.ArrayList;``import` `java.util.List;``import` `java.util.Map;``import` `java.util.TreeMap;` `class` `Node {``    ``int` `data;``    ``Node left, right;` `    ``Node(``int` `item)``    ``{``        ``data = item;``        ``left = right = ``null``;``    ``}``}` `public` `class` `BinaryTree {` `    ``Node root;` `    ``// Values class``    ``class` `Values {``        ``int` `max, min;``    ``}` `    ``// Program to find vertical Order``    ``public` `void` `verticalOrder(Node node)``    ``{``        ``Values val = ``new` `Values();` `        ``// Create TreeMap``        ``Map > map``            ``= ``new` `TreeMap >();` `        ``// Function Call to findHorizonatalDistance``        ``findHorizonatalDistance(node, val, val, ``0``, map);` `        ``// Iterate over map.values()``        ``for` `(List list : map.values()) {``            ``System.out.println(list);``        ``}` `        ``// Print "done"``        ``System.out.println(``"done"``);``    ``}` `    ``// Program to find Horizonatal Distance``    ``public` `void` `findHorizonatalDistance(``        ``Node node, Values min, Values max, ``int` `hd,``        ``Map > map)``    ``{` `        ``// If node is null``        ``if` `(node == ``null``)``            ``return``;` `        ``// if hd is less than min.min``        ``if` `(hd < min.min)``            ``min.min = hd;` `        ``// if hd is greater than min.min``        ``if` `(hd > max.max)``            ``max.max = hd;` `        ``// Using computeIfAbsent``        ``map.computeIfAbsent(hd,``                            ``k -> ``new` `ArrayList())``            ``.add(node.data);` `        ``// Function Call with hd equal to hd - 1``        ``findHorizonatalDistance(node.left, min, max, hd - ``1``,``                                ``map);` `        ``// Function Call with hd equal to hd + 1``        ``findHorizonatalDistance(node.right, min, max,``                                ``hd + ``1``, map);``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{` `        ``BinaryTree tree = ``new` `BinaryTree();` `        ``/* Let us construct the tree shown``                             ``in above diagram */``        ``tree.root = ``new` `Node(``1``);``        ``tree.root.left = ``new` `Node(``2``);``        ``tree.root.right = ``new` `Node(``3``);``        ``tree.root.left.left = ``new` `Node(``4``);``        ``tree.root.left.right = ``new` `Node(``5``);``        ``tree.root.right.left = ``new` `Node(``6``);``        ``tree.root.right.right = ``new` `Node(``7``);``        ``tree.root.right.left.right = ``new` `Node(``8``);``        ``tree.root.right.right.right = ``new` `Node(``9``);` `        ``System.out.println(``"vertical order traversal is :"``);` `        ``// Function Call``        ``tree.verticalOrder(tree.root);``    ``}``}`
Output
```vertical order traversal is :


[1, 5, 6]
[3, 8]


done```

Another Approach using Unordered Map method:

we have seen ordered map above but, its complexity is O(n logn), and also it does not print the vertical nodes of same horizontal distance in correct order.

here we implement this using an unordered map, as unordered map is implemented using a hash table its complexity is O(n), better then using ordered map which is implemented using a BST.

here for printing all nodes of of same horizontal distance from root we use mn and mx two variables which store the minimum and maximum horizontal distance from root.

## C++

 `// C++ program for printing vertical``// order of a given binary tree using BFS``#include ` `using` `namespace` `std;` `// Structure for a binary tree node``struct` `Node {``    ``int` `key;``    ``Node *left, *right;``};` `// A function to create a new node``Node* newNode(``int` `key)``{``    ``Node* node = ``new` `Node;``    ``node->key = key;``    ``node->left = node->right = NULL;``    ``return` `node;``}` `// The main function to print vertical``// order of a binary tree with given root``void` `printVerticalOrder(Node* root)``{``    ``// Base case``    ``if` `(!root) ``return``;` `    ``// Create a map and store vertical``    ``// order in map using``      ``// function getVerticalOrder()``    ``unordered_map<``int``, vector<``int``> > m;``    ``int` `hd = 0;` `    ``// Create queue to do level order``    ``// traversal Every item of queue contains``    ``// node and horizontal distance``    ``queue > q;``    ``q.push({root, hd});``  ` `    ``// mn and mx contain the minimum and``      ``// maximum horizontal distance from root``    ``int` `mn=0,mx=0;``    ``while` `(q.size()>0) {``      ` `        ``// pop from queue front``        ``pair temp = q.front();``        ``q.pop();``        ``hd = temp.second;``        ``Node* node = temp.first;` `        ``// insert this node's data``          ``// in vector of hash``        ``m[hd].push_back(node->key);` `        ``if` `(node->left)``            ``q.push({node->left, hd - 1});``        ``if` `(node->right)``            ``q.push({node->right, hd + 1});``      ` `        ``// Update mn and mx``        ``if``(mn>hd)``          ``mn=hd;``        ``else` `if``(mx tmp=m[i];``        ``for``(``int` `j=0;jleft = newNode(2);``    ``root->right = newNode(3);``    ``root->left->left = newNode(4);``    ``root->left->right = newNode(5);``    ``root->right->left = newNode(6);``    ``root->right->right = newNode(7);``    ``root->right->left->right = newNode(8);``    ``root->right->right->right = newNode(9);``    ``root->right->right->left = newNode(10);``    ``root->right->right->left->right = newNode(11);``    ``root->right->right->left->right->right = newNode(12);``    ``cout << ``"Vertical order traversal is \n"``;``    ``printVerticalOrder(root);``    ``return` `0;``}`
Output
```Vertical order traversal is
4
2
1 5 6
3 8 10
7 11
9 12 ```

Time complexity: O(n)

space complexity: O(n)

Here all the nodes of same horizontal distance will be printed in correct order i.e from top to bottom.

My Personal Notes arrow_drop_up