Given a binary tree, print it vertically. The following example illustrates vertical order traversal.

1 / \ 2 3 / \ / \ 4 5 6 7 / \ 8 9 The output of print this tree vertically will be: 4 2 1 5 6 3 8 7 9

We have discussed a O(n^{2}) solution in the previous post. In this post, an efficient solution based on hash map is discussed. We need to check the Horizontal Distances from root for all nodes. If two nodes have the same Horizontal Distance (HD), then they are on same vertical line. The idea of HD is simple. HD for root is 0, a right edge (edge connecting to right subtree) is considered as +1 horizontal distance and a left edge is considered as -1 horizontal distance. For example, in the above tree, HD for Node 4 is at -2, HD for Node 2 is -1, HD for 5 and 6 is 0 and HD for node 7 is +2.

We can do preorder traversal of the given Binary Tree. While traversing the tree, we can recursively calculate HDs. We initially pass the horizontal distance as 0 for root. For left subtree, we pass the Horizontal Distance as Horizontal distance of root minus 1. For right subtree, we pass the Horizontal Distance as Horizontal Distance of root plus 1. For every HD value, we maintain a list of nodes in a hasp map. Whenever we see a node in traversal, we go to the hash map entry and add the node to the hash map using HD as a key in map.

Following is C++ implementation of the above method. Thanks to Chirag for providing the below C++ implementation.

## C++

// C++ program for printing vertical order of a given binary tree #include <iostream> #include <vector> #include <map> using namespace std; // Structure for a binary tree node struct Node { int key; Node *left, *right; }; // A utility function to create a new node struct Node* newNode(int key) { struct Node* node = new Node; node->key = key; node->left = node->right = NULL; return node; } // Utility function to store vertical order in map 'm' // 'hd' is horigontal distance of current node from root. // 'hd' is initally passed as 0 void getVerticalOrder(Node* root, int hd, map<int, vector<int>> &m) { // Base case if (root == NULL) return; // Store current node in map 'm' m[hd].push_back(root->key); // Store nodes in left subtree getVerticalOrder(root->left, hd-1, m); // Store nodes in right subtree getVerticalOrder(root->right, hd+1, m); } // The main function to print vertical oder of a binary tree // with given root void printVerticalOrder(Node* root) { // Create a map and store vertical oder in map using // function getVerticalOrder() map < int,vector<int> > m; int hd = 0; getVerticalOrder(root, hd,m); // Traverse the map and print nodes at every horigontal // distance (hd) map< int,vector<int> > :: iterator it; for (it=m.begin(); it!=m.end(); it++) { for (int i=0; i<it->second.size(); ++i) cout << it->second[i] << " "; cout << endl; } } // Driver program to test above functions int main() { Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->right->left->right = newNode(8); root->right->right->right = newNode(9); cout << "Vertical order traversal is n"; printVerticalOrder(root); return 0; }

## Java

// Java program for printing vertical order of a given binary tree import java.util.TreeMap; import java.util.Vector; import java.util.Map.Entry; public class VerticalOrderBtree { // Tree node static class Node { int key; Node left; Node right; // Constructor Node(int data) { key = data; left = null; right = null; } } // Utility function to store vertical order in map 'm' // 'hd' is horizontal distance of current node from root. // 'hd' is initially passed as 0 static void getVerticalOrder(Node root, int hd, TreeMap<Integer,Vector<Integer>> m) { // Base case if(root == null) return; //get the vector list at 'hd' Vector<Integer> get = m.get(hd); // Store current node in map 'm' if(get == null) { get = new Vector<>(); get.add(root.key); } else get.add(root.key); m.put(hd, get); // Store nodes in left subtree getVerticalOrder(root.left, hd-1, m); // Store nodes in right subtree getVerticalOrder(root.right, hd+1, m); } // The main function to print vertical oder of a binary tree // with given root static void printVerticalOrder(Node root) { // Create a map and store vertical oder in map using // function getVerticalOrder() TreeMap<Integer,Vector<Integer>> m = new TreeMap<>(); int hd =0; getVerticalOrder(root,hd,m); // Traverse the map and print nodes at every horigontal // distance (hd) for (Entry<Integer, Vector<Integer>> entry : m.entrySet()) { System.out.println(entry.getValue()); } } // Driver program to test above functions public static void main(String[] args) { // TO DO Auto-generated method stub Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7); root.right.left.right = new Node(8); root.right.right.right = new Node(9); System.out.println("Vertical Order traversal is"); printVerticalOrder(root); } } // This code is contributed by Sumit Ghosh

## Python

# Python program for printing vertical order of a given # binary tree # A binary tree node class Node: # Constructor to create a new node def __init__(self, key): self.key = key self.left = None self.right = None # Utility function to store vertical order in map 'm' # 'hd' is horizontal distance of current node from root # 'hd' is initially passed as 0 def getVerticalOrder(root, hd, m): # Base Case if root is None: return # Store current node in map 'm' try: m[hd].append(root.key) except: m[hd] = [root.key] # Store nodes in left subtree getVerticalOrder(root.left, hd-1, m) # Store nodes in right subtree getVerticalOrder(root.right, hd+1, m) # The main function to print vertical order of a binary #tree ith given root def printVerticalOrder(root): # Create a map and store vertical order in map using # function getVerticalORder() m = dict() hd = 0 getVerticalOrder(root, hd, m) # Traverse the map and print nodes at every horizontal # distance (hd) for index, value in enumerate(sorted(m)): for i in m[value]: print i, print # Driver program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) root.right.left.right = Node(8) root.right.right.right = Node(9) print "Vertical order traversal is" printVerticalOrder(root) # This code is contributed by Nikhil Kumar Singh(nickzuck_007)

Output:

Vertical order traversal is 4 2 1 5 6 3 8 7 9

**Time Complexity** of hashing based solution can be considered as O(n) under the assumption that we have good hashing function that allows insertion and retrieval operations in O(1) time. In the above C++ implementation, map of STL is used. map in STL is typically implemented using a Self-Balancing Binary Search Tree where all operations take O(Logn) time. Therefore time complexity of above implementation is O(nLogn).

**Note that the above solution may print nodes in same vertical order as they appear in tree. ** For example, the above program prints 12 before 9. See this for a sample run.

1 / 2 3 / / 4 5 6 7 / 8 10 9 11 12

Refer below post for level order traversal based solution. The below post makes sure that nodes of a vertical line are printed in same order as they appear in tree.

Print a Binary Tree in Vertical Order | Set 3 (Using Level Order Traversal)

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.