# Perfect cube greater than a given number

• Last Updated : 12 Oct, 2022

Given a number N, the task is to find the next perfect cube greater than N.
Examples:

```Input: N = 6
Output: 8
8 is a greater number than 6 and
is also a perfect cube

Input: N = 9
Output: 27```

Approach:

1. Find the cube root of given N.
2. Calculate its floor value using floor function in C++.
3. Then add 1 to it.
4. Print cube of that number.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of above approach``#include ``#include ``using` `namespace` `std;` `// Function to find the next perfect cube``int` `nextPerfectCube(``int` `N)``{``    ``int` `nextN = ``floor``(cbrt(N)) + 1;` `    ``return` `nextN * nextN * nextN;``}` `// Driver Code``int` `main()``{``    ``int` `n = 35;` `    ``cout << nextPerfectCube(n);``    ``return` `0;``}`

## Java

 `//Java implementation of above approach``import` `java.util.*;``import` `java.lang.*;``import` `java.io.*;`   `class` `GFG{``// Function to find the next perfect cube``static` `int` `nextPerfectCube(``int` `N)``{``    ``int` `nextN = (``int``)Math.floor(Math.cbrt(N)) + ``1``;`` ` `    ``return` `nextN * nextN * nextN;``}`` ` `// Driver Code``public` `static` `void` `main(String args[])``{``    ``int` `n = ``35``;`` ` `    ``System.out.print(nextPerfectCube(n));``}``}`

## Python 3

 `# Python 3 implementation of above approach` `# from math import everything``from` `math ``import` `*` `# Function to find the next perfect cube``def` `nextPerfectCube(N) :` `    ``nextN ``=` `floor(N ``*``*` `(``1``/``3``)) ``+` `1` `    ``return` `nextN ``*``*` `3`  `# Driver code    ``if` `__name__ ``=``=` `"__main__"` `:` `    ``n ``=` `35``    ``print``(nextPerfectCube(n))` `# This code is contributed by ANKITRAI1`

## C#

 `// C# implementation of above approach``using` `System;``class` `GFG``{``// Function to find the next perfect cube``static` `int` `nextPerfectCube(``int` `N)``{``    ``int` `nextN = (``int``)Math.Floor(Math.Pow(N,``                         ``(``double``)1/3)) + 1;` `    ``return` `nextN * nextN * nextN;``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `n = 35;` `    ``Console.Write(nextPerfectCube(n));``}``}` `// This code is contributed by ChitraNayal`

## PHP

 ``

## Javascript

 ``

Output:

`64`

Time Complexity: O(logN) because it using cbrt function
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up