Count numbers upto N which are both perfect square and perfect cube

Given a number N. The task is to count total numbers under N which are both perfect square and cube of some integers.

Examples:

Input: N = 100
Output: 2
They are 1 and 64.

Input: N = 100000
Output: 6

Approach: For a given positive number N to be a perfect square, it must satisfy P2 = N Similarly, Q3 = N for a perfect cube where P and Q are some positive integers.
N = P2 = Q3
Thus, if N is a 6th power, then this would certainly work. Say N = A6 which can be written as (A3)2 or (A2)3.
So, pick 6th power of every positive integers which are less than equal to N.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return required count
int SquareCube(long long int N)
{
  
    int cnt = 0, i = 1;
  
    while (int(pow(i, 6)) <= N) {
        ++cnt;
        ++i;
    }
  
    return cnt;
}
  
int main()
{
    long long int N = 100000;
  
    // function call to print required answer
    cout << SquareCube(N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach 
  
public class GFG{
  
    // Function to return required count 
    static int SquareCube(long N) 
    
      
        int cnt = 0, i = 1
      
        while ((int)(Math.pow(i, 6)) <= N) { 
            ++cnt; 
            ++i; 
        
      
        return cnt; 
    
      
    public static void main(String []args)
    
        long N = 100000
      
        // function call to print required answer 
        System.out.println(SquareCube(N)) ;
    
    // This code is contributed by Ryuga
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the 
# above approach
  
# Function to return required count
def SquareCube( N):
  
    cnt, i = 0, 1
  
    while (i ** 6 <= N):
        cnt += 1
        i += 1
  
    return cnt
  
# Driver code
N = 100000
  
# function call to print required 
# answer 
print(SquareCube(N))
  
# This code is contributed 
# by saurabh_shukla

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System; 
  
public class GFG{
   
    // Function to return required count 
    static int SquareCube(long N) 
    
       
        int cnt = 0, i = 1; 
       
        while ((int)(Math.Pow(i, 6)) <= N) { 
            ++cnt; 
            ++i; 
        
       
        return cnt; 
    
       
    public static void Main()
    
        long N = 100000; 
       
        // function call to print required answer 
        Console.WriteLine(SquareCube(N)) ;
    
}
  
/*This code is contributed by 29AjayKumar*/

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP implementation of the 
// above approach
  
// Function to return required count
function SquareCube($N)
{
    $cnt = 0;
    $i = 1;
  
    while ((pow($i, 6)) <= $N)
    {
        ++$cnt;
        ++$i;
    }
  
    return $cnt;
}
  
// Driver Code
$N = 100000;
  
// function call to print required answer
echo SquareCube($N);
  
// This code is contributed by ita_c
?>

chevron_right


Output:

6


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.