Given a number N, the task is to find the next perfect cube greater than N.
Examples:
Input: N = 6
Output: 8
8 is a greater number than 6 and
is also a perfect cube
Input: N = 9
Output: 27
Approach:
- Find the cube root of given N.
- Calculate its floor value using floor function in C++.
- Then add 1 to it.
- Print cube of that number.
Below is the implementation of the above approach:
C++
#include <cmath>
#include <iostream>
using namespace std;
int nextPerfectCube( int N)
{
int nextN = floor (cbrt(N)) + 1;
return nextN * nextN * nextN;
}
int main()
{
int n = 35;
cout << nextPerfectCube(n);
return 0;
}
|
Java
import java.util.*;
import java.lang.*;
import java.io.*;
class GFG{
static int nextPerfectCube( int N)
{
int nextN = ( int )Math.floor(Math.cbrt(N)) + 1 ;
return nextN * nextN * nextN;
}
public static void main(String args[])
{
int n = 35 ;
System.out.print(nextPerfectCube(n));
}
}
|
Python 3
from math import *
def nextPerfectCube(N) :
nextN = floor(N * * ( 1 / 3 )) + 1
return nextN * * 3
if __name__ = = "__main__" :
n = 35
print (nextPerfectCube(n))
|
C#
using System;
class GFG
{
static int nextPerfectCube( int N)
{
int nextN = ( int )Math.Floor(Math.Pow(N,
( double )1/3)) + 1;
return nextN * nextN * nextN;
}
public static void Main()
{
int n = 35;
Console.Write(nextPerfectCube(n));
}
}
|
PHP
<?php
function nextPerfectCube( $N )
{
$nextN = (int)( floor (pow( $N ,(1/3))) + 1);
return $nextN * $nextN * $nextN ;
}
$n = 35;
print (nextPerfectCube( $n ));
?>
|
Javascript
<script>
function nextPerfectCube(N)
{
let nextN = Math.floor(Math.cbrt(N)) + 1;
return nextN * nextN * nextN;
}
let n = 35;
document.write(nextPerfectCube(n));
</script>
|
Time Complexity: O(logN) because it using cbrt function
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
12 Oct, 2022
Like Article
Save Article