Related Articles

Related Articles

Perfect cube greater than a given number
  • Last Updated : 04 Dec, 2018

Given a number N, the task is to find the next perfect cube greater than N.

Examples:

Input: N = 6
Output: 8
8 is a greater number than 6 and
is also a perfect cube

Input: N = 9
Output: 27

Approach:

  1. Find the cube root of given N.
  2. Calculate its floor value using floor function in C++.
  3. Then add 1 to it.
  4. Print cube of that number.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <cmath>
#include <iostream>
using namespace std;
  
// Function to find the next perfect cube
int nextPerfectCube(int N)
{
    int nextN = floor(cbrt(N)) + 1;
  
    return nextN * nextN * nextN;
}
  
// Driver Code
int main()
{
    int n = 35;
  
    cout << nextPerfectCube(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

//Java implementation of above approach
import java.util.*;
import java.lang.*;
import java.io.*;
  
  
  
class GFG{ 
// Function to find the next perfect cube
static int nextPerfectCube(int N)
{
    int nextN = (int)Math.floor(Math.cbrt(N)) + 1;
   
    return nextN * nextN * nextN;
}
   
// Driver Code
public static void main(String args[])
{
    int n = 35;
   
    System.out.print(nextPerfectCube(n));
}
}

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of above approach 
  
# from math import everything
from math import *
  
# Function to find the next perfect cube 
def nextPerfectCube(N) :
  
    nextN = floor(N ** (1/3)) + 1
  
    return nextN ** 3
  
  
# Driver code     
if __name__ == "__main__" :
  
    n = 35
    print(nextPerfectCube(n))
  
# This code is contributed by ANKITRAI1

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System; 
class GFG
// Function to find the next perfect cube
static int nextPerfectCube(int N)
{
    int nextN = (int)Math.Floor(Math.Pow(N,
                         (double)1/3)) + 1;
  
    return nextN * nextN * nextN;
}
  
// Driver Code
public static void Main()
{
    int n = 35;
  
    Console.Write(nextPerfectCube(n));
}
}
  
// This code is contributed by ChitraNayal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of above approach 
  
// from math import everything
  
// Function to find the next perfect cube 
function nextPerfectCube($N)
{
    $nextN = (int)(floor(pow($N,(1/3))) + 1);
  
    return $nextN * $nextN * $nextN ;
}
  
// Driver code     
  
    $n = 35;
    print(nextPerfectCube($n));
  
// This code is contributed by mits
?>

chevron_right


Output:

64

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :