Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Perfect cube greater than a given number

  • Last Updated : 15 Apr, 2021

Given a number N, the task is to find the next perfect cube greater than N.
Examples: 

Input: N = 6
Output: 8
8 is a greater number than 6 and
is also a perfect cube

Input: N = 9
Output: 27

Approach: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

  1. Find the cube root of given N.
  2. Calculate its floor value using floor function in C++.
  3. Then add 1 to it.
  4. Print cube of that number.

C++




// C++ implementation of above approach
#include <cmath>
#include <iostream>
using namespace std;
 
// Function to find the next perfect cube
int nextPerfectCube(int N)
{
    int nextN = floor(cbrt(N)) + 1;
 
    return nextN * nextN * nextN;
}
 
// Driver Code
int main()
{
    int n = 35;
 
    cout << nextPerfectCube(n);
    return 0;
}

Java




//Java implementation of above approach
import java.util.*;
import java.lang.*;
import java.io.*;
 
 
 
class GFG{
// Function to find the next perfect cube
static int nextPerfectCube(int N)
{
    int nextN = (int)Math.floor(Math.cbrt(N)) + 1;
  
    return nextN * nextN * nextN;
}
  
// Driver Code
public static void main(String args[])
{
    int n = 35;
  
    System.out.print(nextPerfectCube(n));
}
}

Python 3




# Python 3 implementation of above approach
 
# from math import everything
from math import *
 
# Function to find the next perfect cube
def nextPerfectCube(N) :
 
    nextN = floor(N ** (1/3)) + 1
 
    return nextN ** 3
 
 
# Driver code    
if __name__ == "__main__" :
 
    n = 35
    print(nextPerfectCube(n))
 
# This code is contributed by ANKITRAI1

C#




// C# implementation of above approach
using System;
class GFG
{
// Function to find the next perfect cube
static int nextPerfectCube(int N)
{
    int nextN = (int)Math.Floor(Math.Pow(N,
                         (double)1/3)) + 1;
 
    return nextN * nextN * nextN;
}
 
// Driver Code
public static void Main()
{
    int n = 35;
 
    Console.Write(nextPerfectCube(n));
}
}
 
// This code is contributed by ChitraNayal

PHP




<?php
// PHP implementation of above approach
 
// from math import everything
 
// Function to find the next perfect cube
function nextPerfectCube($N)
{
    $nextN = (int)(floor(pow($N,(1/3))) + 1);
 
    return $nextN * $nextN * $nextN ;
}
 
// Driver code    
 
    $n = 35;
    print(nextPerfectCube($n));
 
// This code is contributed by mits
?>

Javascript




<script>
 
// Javascript implementation of above approach
 
// Function to find the next perfect cube
function nextPerfectCube(N)
{
    let nextN = Math.floor(Math.cbrt(N)) + 1;
 
    return nextN * nextN * nextN;
}
 
// Driver Code
let n = 35;
 
document.write(nextPerfectCube(n));
 
</script>
Output: 
64

 

Time Complexity: O(1)

Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :