Open In App
Related Articles

Minimum divisor of a number to make the number perfect cube

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given a positive integer N, the task is to find the minimum divisor by which it shall be divided to make it a perfect cube. If N is already a perfect cube, then print 1.
Examples: 

Input : N = 128
Output : 2
By Dividing N by 2, we get 64 which is a perfect cube.

Input : n = 6
Output : 6
By Dividing N by 6, we get 1 which is a perfect cube.

Input : n = 64
Output : 1

Any number is a perfect cube if all prime factors of it appear in multiples of 3, as you can see in the below figure.  

Therefore, the idea is to find the prime factorization of N and find power of each prime factor. Now, find and multiply all the prime factors whose power is not divisible by 3 as primeFactor*power%3. The resultant of the multiplication is the answer.
Below is the implementation of the above approach:  

C++

// C++ program to find minimum number which divide n
// to make it a perfect cube
#include <bits/stdc++.h>
using namespace std;
 
// Returns the minimum divisor
int findMinNumber(int n)
{
    int count = 0, ans = 1;
 
    // Since 2 is only even prime, compute its
    // power separately.
    while (n % 2 == 0) {
        count++;
        n /= 2;
    }
 
    // If count is not divisible by 3,
    // it must be removed by dividing
    // n by prime number power.
    if (count % 3 != 0)
        ans *= pow(2, (count % 3));
 
    for (int i = 3; i <= sqrt(n); i += 2) {
        count = 0;
        while (n % i == 0) {
            count++;
            n /= i;
        }
 
        // If count is not divisible by 3,
        // it must be removed by dividing
        // n by prime number power.
        if (count % 3 != 0)
            ans *= pow(i, (count % 3));
    }
 
    // if n is a prime number
    if (n > 2)
        ans *= n;
 
    return ans;
}
 
// Driven Program
int main()
{
    int n = 128;
    cout << findMinNumber(n) << endl;
    return 0;
}

                    

Java

// Java program to find minimum number which divide n
// to make it a perfect cube
import java.io.*;
public class GFG{
  
// Returns the minimum divisor
static int findMinNumber(int n)
{
    int count = 0, ans = 1;
  
    // Since 2 is only even prime, compute its
    // power separately.
    while (n % 2 == 0) {
        count++;
        n /= 2;
    }
  
    // If count is not divisible by 3,
    // it must be removed by dividing
    // n by prime number power.
    if (count % 3 != 0)
        ans *= Math.pow(2, (count % 3));
  
    for (int i = 3; i <= Math.sqrt(n); i += 2) {
        count = 0;
        while (n % i == 0) {
            count++;
            n /= i;
        }
  
        // If count is not divisible by 3,
        // it must be removed by dividing
        // n by prime number power.
        if (count % 3 != 0)
            ans *= Math.pow(i, (count % 3));
    }
  
    // if n is a prime number
    if (n > 2)
        ans *= n;
  
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    int n = 128;
    System.out.print(findMinNumber(n) +"\n");
}
}
 
// This code is contributed by Rajput-Ji

                    

Python3

# Python3 program to find minimum number which divide n
# to make it a perfect cube
 
# Returns the minimum divisor
def findMinNumber(n):
    count = 0;
    ans = 1;
 
    # Since 2 is only even prime, compute its
    # power separately.
    while (n % 2 == 0):
        count+=1;
        n /= 2;
     
    # If count is not divisible by 3,
    # it must be removed by dividing
    # n by prime number power.
    if (count % 3 != 0):
        ans *= pow(2, (count % 3));
 
    for i in range(3, int(pow(n, 1/2)), 2):
        count = 0;
        while (n % i == 0):
            count += 1;
            n /= i;
         
        # If count is not divisible by 3,
        # it must be removed by dividing
        # n by prime number power.
        if (count % 3 != 0):
            ans *= pow(i, (count % 3));
     
    # if n is a prime number
    if (n > 2):
        ans *= n;
 
    return ans;
 
# Driver code
if __name__ == '__main__':
    n = 128;
    print(findMinNumber(n));
 
# This code is contributed by 29AjayKumar

                    

C#

// C# program to find minimum number which divide n
// to make it a perfect cube
using System;
 
class GFG{
   
// Returns the minimum divisor
static int findMinNumber(int n)
{
    int count = 0, ans = 1;
   
    // Since 2 is only even prime, compute its
    // power separately.
    while (n % 2 == 0) {
        count++;
        n /= 2;
    }
   
    // If count is not divisible by 3,
    // it must be removed by dividing
    // n by prime number power.
    if (count % 3 != 0)
        ans *= (int)Math.Pow(2, (count % 3));
   
    for (int i = 3; i <= Math.Sqrt(n); i += 2) {
        count = 0;
        while (n % i == 0) {
            count++;
            n /= i;
        }
   
        // If count is not divisible by 3,
        // it must be removed by dividing
        // n by prime number power.
        if (count % 3 != 0)
            ans *= (int)Math.Pow(i, (count % 3));
    }
   
    // if n is a prime number
    if (n > 2)
        ans *= n;
   
    return ans;
}
   
// Driver code
public static void Main(String[] args)
{
    int n = 128;
    Console.Write(findMinNumber(n) +"\n");
}
}
 
// This code is contributed by 29AjayKumar

                    

Javascript

<script>
 
// Javascript program to find minimum number which divide n
// to make it a perfect cube
 
// Returns the minimum divisor
function findMinNumber(n)
{
    var count = 0, ans = 1;
 
    // Since 2 is only even prime, compute its
    // power separately.
    while (n % 2 == 0) {
        count++;
        n /= 2;
    }
 
    // If count is not divisible by 3,
    // it must be removed by dividing
    // n by prime number power.
    if (count % 3 != 0)
        ans *= Math.pow(2, (count % 3));
 
    for (var i = 3; i <= Math.sqrt(n); i += 2) {
        count = 0;
        while (n % i == 0) {
            count++;
            n /= i;
        }
 
        // If count is not divisible by 3,
        // it must be removed by dividing
        // n by prime number power.
        if (count % 3 != 0)
            ans *= Math.pow(i, (count % 3));
    }
 
    // if n is a prime number
    if (n > 2)
        ans *= n;
 
    return ans;
}
 
// Driven Program
var n = 128;
document.write(findMinNumber(n));
 
// This code is contributed by rutvik_56.
</script>

                    

Output: 
2

 

Time Complexity: O(sqrt(n))
Auxiliary Space: O(1)



Last Updated : 20 Dec, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads