Number of blocks in a chessboard a knight can move to in exactly k moves

Given integers i, j, k and n where (i, j) is the initial position of the Knight on a n * n chessboard, the task is to find the number of positions the Knight can move to in exactly k moves.

Examples:

Input: i = 5, j = 5, k = 1, n = 10
Output: 8



Input: i = 0, j = 0, k = 2, n = 10
Output: 10
The knight can see total 10 different positions in 2nd move.

Approach: Use a recursive approach to solve the problem.
First find all the possible positions where the knight can move to so if the initial position is i, j. Get to all valid locations in single move and recursively find all the possible positions where knight can move to in k – 1 steps from there. The base case of this recursion is when k == 0 (no move to make) then we will mark the position of the chessboard as visited if it is unmarked and increase the count. Finally, display the count .

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// function that will be called recursively
int recursive_solve(int i, int j, int steps, int n, 
                      map<pair<int, int>, int> &m)
{
    // If there's no more move to make and
    // this position hasn't been visited before
    if (steps == 0 && m[make_pair(i, j)] == 0) {
  
        // mark the position
        m[make_pair(i, j)] = 1;
  
        // increase the count        
        return 1;
    }
      
    int res = 0;
    if (steps > 0) {
  
        // valid movements for the knight
        int dx[] = { -2, -1, 1, 2, -2, -1, 1, 2 };
        int dy[] = { -1, -2, -2, -1, 1, 2, 2, 1 };
  
        // find all the possible positions
        // where knight can move from i, j
        for (int k = 0; k < 8; k++) {
  
            // if the positions lies within the
            // chessboard
            if ((dx[k] + i) >= 0
                && (dx[k] + i) <= n - 1
                && (dy[k] + j) >= 0
                && (dy[k] + j) <= n - 1) {
  
                // call the function with k-1 moves left
                res += recursive_solve(dx[k] + i, dy[k] + j,
                                       steps - 1, n, m);
            }
        }
    }
    return res;
}
  
// find all the positions where the knight can
// move after k steps
int solve(int i, int j, int steps, int n)
{
    map<pair<int, int>, int> m;
    return recursive_solve(i, j, steps, n, m);
}
  
// driver code
int main()
{
    int i = 0, j = 0, k = 2, n = 10;
  
    cout << solve(i, j, k, n);
  
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach 
from collections import defaultdict
  
# Function that will be called recursively 
def recursive_solve(i, j, steps, n, m): 
  
    # If there's no more move to make and 
    # this position hasn't been visited before 
    if steps == 0 and m[(i, j)] == 0
  
        # mark the position 
        m[(i, j)] = 1
  
        # increase the count         
        return 1
      
    res = 0
    if steps > 0
  
        # valid movements for the knight 
        dx = [-2, -1, 1, 2, -2, -1, 1, 2
        dy = [-1, -2, -2, -1, 1, 2, 2, 1
  
        # find all the possible positions 
        # where knight can move from i, j 
        for k in range(0, 8): 
  
            # If the positions lies 
            # within the chessboard 
            if (dx[k] + i >= 0 and
                dx[k] + i <= n - 1 and
                dy[k] + j >= 0 and
                dy[k] + j <= n - 1): 
  
                # call the function with k-1 moves left 
                res += recursive_solve(dx[k] + i, dy[k] + j, 
                                       steps - 1, n, m) 
      
    return res 
  
# Find all the positions where the 
# knight can move after k steps 
def solve(i, j, steps, n): 
  
    m = defaultdict(lambda:0
    return recursive_solve(i, j, steps, n, m) 
  
# Driver code 
if __name__ == "__main__"
  
    i, j, k, n = 0, 0, 2, 10
      
    print(solve(i, j, k, n)) 
  
# This code is contributed by Rituraj Jain

chevron_right


Output:

10


My Personal Notes arrow_drop_up

Second year Department of Information Technology Jadavpur University

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : rituraj_jain